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Abstract

This paper explores how internet technology advancements drive cross-city collab-
orations (or "geographic fragmentation"). We use a spatial equilibrium model with
cross-city production and skill heterogeneity to analyze the effects of reduced commu-
nication costs on domestic fragmentation. Our model suggests that better internet
leads to increased production fragmentation, concentrating skilled workers in larger
cities and reducing their numbers in smaller ones. Empirical validation using a novel
instrumental variable approach confirms these predictions. Our calibrated model indi-
cates that internet advancements have increased real wages for both high- and low-skill
workers, with welfare improvements partly due to spatial reorganization from enhanced
production fragmentation.
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“It’s the biggest investment in high-speed internet ever. Because for today’s economy to
work for everyone, internet access is just as important as electricity, or water, or other basic
services.”

– President Joe Biden, White House address, June 2023

1 Introduction

The advent of internet has profoundly reshaped the U.S. economy. By 2013, 80% of Amer-
icans were online, a leap from the 1980s, as shown in Figure 1. The Biden-Harris Adminis-
tration’s recent commitment to universal high-speed internet access, under the Broadband
Equity Access and Deployment (BEAD) Program, underscores the pivotal role of digital
connectivity in modern economic and societal shifts.1 Amongst its wide-ranging impacts,
the increasing availability of internet has specifically reduced coordination frictions, fostering
cross-regional collaborations and a more fragmented production process. Whereas extensive
literature exists on geographic fragmentation across international borders through offshoring
or international outsourcing (see, e.g., Hummels, Ishii and Yi, 2001; Grossman and Rossi-
Hansberg, 2008), there is relatively little research on domestic production fragmentation and
its impacts on the labor market.

This paper examines—theoretically, empirically and quantitatively—how internet connec-
tivity reshapes the spatial organization of production within a country. According to a survey
by the Boston Consulting Group, more than 95% of outsourcing, a key channel of produc-
tion fragmentation, is conducted domestically.2 Intuitively, the implications of this trend
are distinctively different from those performed internationally due to labor mobility. While
international borders restrict labor movement, within a country, labor can move more freely,
especially in the long run, across cities. This mobility influences labor demand for various
skills as economic activities shift across regions. Consequently, domestic fragmentation can
lead to a redistribution of skills across local labor markets, affecting welfare, productivity,
and wage inequalities both at the aggregate level and in their spatial distributions across
cities.

We first develop a spatial equilibrium model in a system-of-cities setting to study how
1See Hjort and Tian (2024) for a survey of the recent literature.
2Source: BCG Global Outsourcing Survey, 2015. https://mkt-bcg-com-public-images.s3.

amazonaws.com/public-pdfs/legacy-documents/file14496.pdf.
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Figure 1: Increase in Internet Usage 1980 to 2013

Data source: left panel: World Development Indicators; right panel: authors’ calculation from the Current
Population Survey Internet and Computer Use Supplement

improvements in communication technologies facilitate the formation of cross-region pro-
duction teams. In our model, the production of goods requires two distinct sets of inputs:
skill-intensive knowledge inputs, produced by high-skill workers who create the “blueprint”
of a product, and less skill-intensive standardized production (Garicano and Rossi-Hansberg,
2006; Arkolakis et al., 2018). Larger cities, with their comparative advantage in skill-intensive
tasks (Davis and Dingel, 2019), attract a greater concentration of high-skill workers special-
izing in knowledge production. In contrast, workers engaged in standardized production
tend to locate in smaller cities to save on costs. Both high-skill and low-skill workers are
mobile across regions, with high-skill workers deciding the spatial organization of produc-
tion, including location and scale, to maximize profits. Notably, the formation of cross-city
production teams needs to account for fragmentation costs, such as those associated with
communication and coordination when economic agents specializing in different tasks are
geographically dispersed.3 The equilibrium conditions in the model determine the extent
of production fragmentation and the distribution of skills, wages, and housing prices across
cities. Additionally, the model generates testable predictions on the impact of reduced com-
munication costs on the spatial skill distribution, particularly predicting an increase in the
share of high-skill workers in larger cities and a corresponding decline it in smaller cities.

3In this paper, we do not distinguish between "firms" and "production teams" , while allowing for collab-
orations in production to happen both intra- and inter-firms. For example, a furniture production team can
be either an individual firm or consist of a furniture design firm and a separate furniture factory.

3



To validate our theoretical model, we next present empirical evidence using U.S. data. We
begin by demonstrating that the observed spatial redistribution of skills over time is linked
to an increasing degree of spatial segregation. Our analysis shows that larger cities have
become increasingly specialized in skill-intensive activities, a trend that intensified between
1980 and 2013. During this period, high- and low-skill workers have also become more spa-
tially segregated, consistent with the model. We further investigate the predicted impact
of internet improvements on the skill composition within cities, particularly the contrasting
results across cities of different sizes. To address the endogeneity of local internet quality,
we adopt a novel instrumentation strategy inspired by the literature, which uses geological
features for identification (e.g., Juhasz and Steinwender, 2019). Specifically, we leverage the
unique features of U.S. broadband technology and use elevation levels of the local terrain
to develop an instrument for internet connectivity quality. This analysis provides causal
evidence supporting our main theoretical prediction, showing that improved internet connec-
tivity increases the concentration of high-skill workers in larger cities, while reducing it in
smaller cities.

Finally, we parameterize our model to quantitatively assess the effects of domestic geo-
graphic fragmentation. For this analysis, we assemble a comprehensive dataset that merges
census data, internet bandwidth records, and the Orbis Database that details direct share-
holder information for subsidiary plants. The Orbis data particularly enable us to measure
the extent of cross-city joint production through the headquarter-subsidiary relationship.
Using this dataset, we compute the bilateral fragmentation costs between city pairs and es-
timate key structural parameters, including the elasticity of fragmentation with respect to
internet quality. We perform further quantitative analyses to evaluate the impact of internet
improvements on spatial skill redistribution and the real wages of high- and low-skill workers,
both directly and indirectly, through general equilibrium reallocation. In a counterfactual
exercise, we simulate a world without internet improvements since the 1980s, showing that
the extent of spatial skill redistribution would have been reduced by 60%, underscoring the
quantitative significance of our proposed mechanism. Internet improvements have also in-
creased real wages for both high- and low-skill workers, with a significant portion of welfare
improvements driven by spatial reorganization resulting from more fragmented production
across different cities. In the final exercise, we assess the policy impact of the Biden-Harris
Administration’s BEAD Program, showing that improvements in internet connectivity would
lead to greater spatial divergence of skills, and significant welfare improvements for both high-
and low-skill workers.

This paper is related to three strands of the literature. First, domestic production frag-
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mentation is driven by similar economic forces as international production fragmentation
through offshoring or outsourcing. A large volume of research studies how falling trans-
portation or communication costs motivate firms to disintegrate production and send certain
jobs overseas to take advantage of comparative advantages (see, e.g., Antràs, Garicano and
Rossi-Hansberg, 2006; Grossman and Rossi-Hansberg, 2008; Abramovsky and Griffith, 2006;
Fan, 2024). While the two types of production fragmentation share the same underlying
driving forces, our work contrasts with this literature by focusing on the domestic context,
thereby highlighting both the shared and divergent economic implications with respect to
labor mobility.

Our work is also closely connected to a fast expanding literature on cross-city analysis
of production fragmentation. Duranton and Puga (2005) pioneer the theoretical research,
for which they develop a model with homogeneous labor that is mobile across cities and
sectors, concluding that low communication cost facilitates the separation of managerial
and manufacturing units in different cities. Contemporaneous works by Eckert (2019) and
Eckert, Ganapati and Walsh (2022) show that ICT technology facilitates outsourcing of
tradable services, which contribute to the rising wage inequality in the US. Most recently,
Demir, Javorcik and Panigrahi (2023) study how fast internet access affects input sourcing
and economic growth across locations, finding that firms reallocate their purchases towards
suppliers with better internet and diversify their input sources. Our paper complements
these studies, while contributes to the literature by demonstrating, both theoretically and
empirically, the heterogeneous spatial effects of internet improvement on skill shares across
cities of different sizes.

Finally, our paper is closely related to the literature on quantitative spatial equilibrium
analysis, e.g., Allen and Arkolakis (2014) and Allen, Arkolakis and Takahashi (2020). Previ-
ous literature mostly focuses on transportation infrastructure, which affects trade cost. We
differ by considering communication technology infrastructure, and the internet in particu-
lar. In our framework, internet improvement affects cross-city joint production cost instead
of transportation cost. By doing so, our paper connects with a body of literature that stud-
ies the effect of modern technology improvement on production organization (see, e.g., Fort,
2017; Tian, 2021).

The rest of the paper is organized as follows. Sections 2 and 3 introduce the model, pro-
vide theoretical analysis, and derive equilibrium properties. Section 4 presents the empirical
findings and investigates the heterogeneous effects of internet improvement on skill composi-
tion across cities of different sizes. Section 5 provides a quantitative evaluation of our model
and presents results from the counterfactual exercise. Section 6 concludes.
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2 The Model

Our theoretical framework embeds a model of firm production organizations in a system-
of-cities setting with heterogeneous agents. The basic logic of the model can be sketched
as follows: In the model, larger cities have a comparative advantage in the relatively skill-
intensive managerial activities performed by high-skill workers over less skill-intensive pro-
duction activities performed by lower-skill workers. A reduction in cross-city collaboration
costs would induce a greater extent of cross-city collaborations (or domestic fragmentation of
production), resulting in larger cities specializing more in managerial activities and smaller
cities in production activities. Given spatial mobility, changes in the relative local labor de-
mand will lead to spatial redistribution of skills, with high-skill workers becoming increasingly
concentrated in larger cities.

2.1 Set-up

We consider an economy with a finite number of cities, indexed by n ∈ N ≡ {1, 2, . . . , N}.

There is a continuum of agents, distinguished by their exogenously-given skill levels, each of
whom inelastically supplies one unit of labor. The measures of high-skill workers (which we
refer to as managers) and low-skill workers (which we refer to as production workers) are Lm

and Lp, respectively.

Individuals consume two goods: a homogeneous tradable good and housing. The utility
function follows a standard Stone-Geary form:

U(c, h) = α−α(1 − α)−(1−α)cαh1−α, (1)

where c is the consumption of the tradable good and h is the consumption of housing.
Managers and production workers choose their residential locations to maximize their utility.4

The homogeneous tradable good can be produced in any location of the economy with
varying productivity levels. Each production team consists of a single manager and l homo-
geneous production workers.5 A manager living in city n can choose to locate the production

4A number of papers study the various forms of mobility cost in reality; see, e.g., Moretti (2011), Baum-
Snow and Pavan (2012), and Ferreira, Gyourko and Tracy (2012). This paper focuses on long-run changes
in the labor market. We thus takes the position that in the long run, individuals are highly mobile.

5Note that this production setup is equivalent to any constant returns to scale production function. Both
the high-skill input M and the low-skill input L can be equivalently translated into M production teams, each
of which consists of a single manager and L

M production workers.
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team in any city c ∈ N .6 Managers living in n and producing in c ̸= n incur a productivity
loss that we model as iceberg bilateral fragmentation costs, τnc ≥ 1, with τnn normalized to 1.
These costs reflect the costs of managing off-site workers, e.g., communication or coordina-
tion frictions between managers and production workers located in different cities. Formally,
a manager living in n and managing workers in c has the following production technology:

ync = anc

τnc

lβ. (2)

The production technology, which follows Lucas (1978), has three elements: First, anc denotes
the “manager’s productivity,” which we discuss further below; second, τnc reflects the iceberg
productivity loss of managing an off-site production team, or fragmentation costs; and third,
β < 1 is an element of diminishing returns to scale, or the manager’s span of control.

A manager in city n is characterized by a productivity vector an = {an1, an2, . . . , anN}.
These productivity vectors are origin-city specific and vary across managers, causing man-
agers in n to potentially make different choices regarding production locations. In doing
so, we assume implicitly that the productivity heterogeneities originate from managers, who
take the role of developing the blueprint for the products and providing management capital
for the production process.7 The manager’s productivity, anc, has two components: (1) local
agglomeration force f(Lm

n ), which is an increasing function of the total mass of managers in
city n, Lm

n ; and (2) a random draw, denoted by ānc. The two components are assumed to
enter the manager’s productivity function multiplicatively:

anc = f(Lm
n )ānc. (3)

In particular, a manager who lives in city n draws her productivity ānc from N cities simul-
taneously. Each ānc is drawn independently from a Fréchet distribution with a cumulative
distribution function given by

G(ā) = exp
(
−Tnā−θ

)
,

where Tn is an exogenous technology parameter representing city n’s fundamentals, such as
natural resources endowment or geographic location, that potentially affect labor productiv-
ity. θ represents the dispersion of the draws: A higher value θ > 0 decreases the dispersion
of the manager’s productivity across locations.8

6To the extent possible, we use n to denote the manager’s residential location (the source of the blueprint
or management capital) and c to index the location of the production.

7It is straightforward to extend the model to allow worker productivity to vary with production locations
in such a way that none of the results that we focus on would be affected.

8The assumption of having i.i.d draws across all locations is observationally equivalent to a joint Fréchet
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2.2 Manager’s Optimization

In this environment, managers face a three-step optimization problem. First, a manager
chooses where to live, which is also where she works and where the firm’s headquarters are
located. Second, the manager chooses her firm’s spatial organization (i.e., location of the
production team). Finally, the manager decides on the production scale (i.e., how many
workers to hire). We consider the optimization problem in a backward order, starting from
the last step.

2.2.1 Production Scale

Managers are the residual claimants of the firm’s profit. The income of a manager who lives
in city n and manages workers in city c is

πnc = anc

τnc

lβ − wcl, (4)

where wc is the wage of workers in city c. Recall also that τnc ≥ 1 is the iceberg cost that
reflects the cost of managing workers remotely—e.g., the communication cost between city
n and city c.

Given anc, a manager chooses the size of her production team, l, to maximize her income.
Taking the first-order condition of (4) with respect to l, we obtain the optimal production
scale l∗,

l∗ = ( βanc

τncwc

)
1

1−β , (5)

where a more productive manager (higher anc) manages a larger production team.

Combining (4) and (5), a manager living in city n with a production team in city c has
an income of:

π∗
nc = β

β
1−β (1 − β)( anc

τncw
β
c

)
1

1−β . (6)

Note that both a higher iceberg fragmentation cost τnc and a higher worker wage wc would
reduce the manager’s income.

distribution assumption. See Eaton and Kortum (2002), footnote 14, for a discussion.
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2.2.2 Production Locations

A manager who lives in city n chooses to locate the production team in a city that maximizes
her income π∗

nc, as specified in (6). The Fréchet assumption on the idiosyncratic component
of manager’s productivity allows us to derive the following “fragmentation gravity equation:”

Lemma 1 The probability of a manager who lives in city n and locates production in city c

is

Tn(τncw
β
c )−θ

Φn

, (7)

where Φn, city n’s “fragmentation potential”, is defined by

Φn ≡
∑

k

Tn(τnkwβ
k )−θ, (8)

where ∑n∈N Φn = 1.

Proof. See Appendix A.

By the Weak Law of Large Numbers, the above gravity equation also gives the share of
managers living in city n and locating their production teams in city c:

xnc ≡ Lm
nc

Lm
n

= Tn(τncw
β
c )−θ

Φn

. (9)

Based on this result, it is easy to see that an internet infrastructure development that drives
down cross-city fragmentation cost, τnc, increases the share of cross-city production teams
relative to domestic production teams, all else equal.

2.2.3 Residential Locations

Individuals choose their residential location to maximize utility. From (1), we derive the
indirect utility function for an agent with income πn facing rent pn in city n:

V (pn, πn) = πn

p1−α
n

. (10)
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Additionally, given the Stone-Geary preference, the equilibrium housing rent in city n is given
by

pn = (1 − α)Wn

Hn

, (11)

where Wn is the total income in city n, including both city n managers’ and production
workers’ income, and Hn is the exogenously given housing supply in city n.9

Given the distribution of the productivity draws and the profit function π∗
nc in (6), we can

derive the distribution for managers’ income.

Lemma 2 The income of a manager who lives in city n follows the following Fréchet distri-
bution with a cumulative distribution function:

G(π) = exp
(
−[β−β(1 − β)−(1−β)]−θ (f(Lm

n ))θ Φnπ−θ(1−β)
)

. (12)

Proof. See Appendix A.

By the properties of a Fréchet distribution, the expected income of a manager living in
city n is thus

E[πn] = ζ[[f(Lm
n )]θΦn]

1
θ(1−β) , (13)

where ζ ≡ θβ
β

1−β (1 − β)2 ∫+∞
0 exp

(
−x−θ(1−β)

)
x−θ(1−β)dx.

Managers choose their residential locations to maximize their indirect utility in (10).
Denoted by Ψn, a manager’s natural logarithm of the expected utility function is given by

Ψn = log
(

E[πn]
p1−α

n

)
= const + 1

1 − β
log[f(Lm

n )] + 1
θ(1 − β) log Φn − (1 − α) log pn. (14)

A manager’s problem is therefore to maximize Ψn. In a spatial equilibrium, managers are
indifferent between living in city n and n′ (conditional on there being non-zero managers in
both cities), so that Ψn = Ψn′ , ∀n, n′ ∈ N , or

1
1 − β

log[f(Lm
n )] + 1

θ(1 − β) log Φn − (1 − α) log pn (15)

= 1
1 − β

log[f(Lm
n′)] + 1

θ(1 − β) log Φn′ − (1 − α) log pn′ .

9In the baseline model, we assume that the housing supply is fixed. In Appendix K, we relax this
assumption and consider a scenario in which housing supply is elastic.
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2.3 Worker’s Optimization

Similar to managers, production workers also choose their location to maximize their indi-
rect utility in (10), given their income wn and housing price pn. In equilibrium, ex-ante
homogeneous production workers are indifferent and thus receive the same indirect utility
across cities, i.e., V w

n = V w
n′ = v̄ ∀ n, n′ ∈ N . We therefore obtain the following equilibrium

condition:
wn/p1−α

n = wn′/p1−α
n′ . (16)

3 Equilibrium Analysis

In this section, we characterize the spatial equilibrium. We first provide the definition, then
consider a special “fragmentation autarky” case to provide more intuition. We next focus on a
simplified two-city model to derive analytic results for the effects of changes in fragmentation
costs, τnc, on the distribution of skills. We finally perform numerical simulation in a multi-city
scenario.

3.1 Definition

In a spatial equilibrium, managers and workers are indifferent across locations.10 With ex-
ogenous parameters {Tn, τnc, Hn} ∀n, c ∈ N , and a mass of managers LM and workers LP ,
an equilibrium is a vector of labor allocations {Lm

nc, LP
nc} and prices {pn, wn} such that:

1. Production workers maximize their utility in (10);

2. Housing prices pn are determined by (11);

3. Managers maximize their expected utility in (14);

4. Labor markets clear for both managers and workers:

Lm =
∑

n

Lm
n =

∑
n,c

Lm
nc, (17)

10Given the unbounded Frechét distribution draws, we can show that all cities have a nonzero mass of
production workers. Additionally, to be consistent with the data, we further assume that city fundamentals
ensure that all cities have a nonzero mass of managers.

11



and
Lp =

∑
n

Lp
n =

∑
n,c

Lp
nc, (18)

where Lp
nc refers to the mass of production workers hired by managers from n and living

in city c. This is given by

Lp
nc = ηw−1

c

(
Tn(τncw

β
c )−θ

)
Φ

1
θ(1−β) −1
n [f(Lm

n )]
1

1−β Lm
n , (19)

where η = β
1

1−β
∫∞

0 y− 1
θ(1−β) e−ydy.11

In Appendix C, we provide further details on the equilibrium characterization. Further-
more, we provide, using Banach fixed point theorem, a set of sufficient conditions under
which the equilibrium exists and is unique.

3.2 Equilibrium with Infinite Fragmentation Cost

To derive the analytic results, we adopt the following parametric assumption for the agglom-
eration force,

f(Lm
n ) = (Lm

n )γ,

where the γ ≥ 0 parameter governs the strength of agglomeration externalities.

We first consider a special “fragmentation autarky” case, in which the bilateral fragmen-
tation cost τnc → +∞, ∀n ̸= c. In this scenario, the system of equilibrium conditions reads
as follows:

γ(log Lm
n − log Lm

n′) = (log wn − log wn′) − (log T
1
θ

n − log T
1
θ

n′) (20)

and(
1

1 − α
+ β

1 − β

)
(log wn−log wn′) =

(
γ

1 − β
+ 1

)
[log Lm

n −log Lm
n′ ]+

1
1 − β

[log T
1
θ

n −log T
1
θ

n′ ].

(21)

In this case, the cross-city fragmentation cost is prohibitively high, such that all managers
will hire production workers in the same city as the one in which the manager lives. We
can show that under regularity conditions, i.e., γ + 1 > γ

1−α
, cities with high technology

parameters (Tn) not only have a larger fraction of the whole population, but also have a
11See Appendix D for details on derivation of the demand for production workers.
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larger fraction of both the high-skill population and the low-skill population.12 Formally, we
state the results in the following proposition.

Proposition 3 Given f(Lm
n ) = (Lm

n )γ and γ + 1 > γ
1−α

, when τnc → +∞, ∀n ̸= c, the
spatial equilibrium exists and is unique. The number of managers in each city Lm

n and the
number of production workers in each city Lp

n satisfy that

Lm
n ∝ T κ

n , (22)

Lp
n ∝ T κ

n , (23)

where κ =
1

1−α
−1

1+γ− γ
1−α

1
θ

> 0. As a result, the high-skill employment share Lm
n

Lm
n +Lp

n
is the same

across all cities.

Proof. See Appendix A.

3.3 Equilibrium with Finite Fragmentation Costs

We next analyze the equilibrium with finite fragmentation costs. We start with a simple two-
city case to elucidate the mechanism of skill relocation after a reduction in fragmentation
costs, before extending the analysis to a multi-city scenario.

3.4 Two-city Analysis

We start with a two-city case with quasi-symmetric communication cost and fixed housing
supply.13 Using the simple model, we highlight the mechanism behind the skill relocation
after cross-city communication cost reduction.

First, it is easy to see that when the cross-city fragmentation cost is infinite, the city with
the greater technology parameter is larger and more skill intensive. We can solve for Lm

1
Lm

2
and

12The assumption that γ + 1 > γ
1−α implies that the elasticity of agglomeration, which is positively

correlated with γ, is smaller than the elasticity of urban costs, which is positively correlated with 1 − α. This
ensures that cities have a finite size in equilibrium. See Behrens, Duranton and Robert-Nicoud (2014) for
related discussions.

13We assume Hn = Hc = 1 in this section to highlight the role of the comparative advantage of cities in
technology Tn. The analysis can easily be extended to the case with different city-level housing supplies. In
our quantitative section, we take into account housing supply heterogeneity.
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w1
w2

explicitly using (20) and (21):

log Lm
1

Lm
2

=
α

1−α

γ + 1 − γ
1−α

[log T
1
θ

1 − log T
1
θ

2 ] (24)

and
log w1

w2
= 1

γ + 1 − γ
1−α

[log T
1
θ

1 − log T
1
θ

2 ]. (25)

Suppose, without loss of generality, that T1 > T2. From (24) and (25), it is obvious that
the population in city 1 is higher than that in city 2. With a reduction in communication
cost, we can show that a small reduction in fragmentation cost—e.g., an improvement in
internet quality that facilitates cross-city communication—results in a spatial reallocation of
skills. Specifically, the share of high-skill employment in the initially larger city will increase,
whereas the share of high-skill employment in the initially smaller city will decrease.

Proposition 4 In the two-city case, if τ12 = τ21 goes down around the neighborhood of the
infinite communication cost, and suppose that T1 > T2, then Lm

1 and Lp
2 would go up, Lm

2 and
Lp

1 would go down. A stronger agglomeration force (larger γ) implies larger labor reallocation
for both the high-skilled and the low-skilled.

Proof. See Appendix A.

This proposition states that if internet improvement reduces cross-city communication
cost, then bigger cities will attract a larger proportion of the high skilled as internet quality
improves. Through a numerical simulation of the two-city equilibrium, we confirm the propo-
sition’s prediction on skill flows after the internet improvement. As shown in the left panel
of Figure 2, when the ICT openness—defined as the inverse of the fragmentation costs—
increases, the share of managers increases in the larger city, whereas the share of managers
goes down in the smaller city, as shown in the right panel of Figure 2.14

We also consider the welfare implications of a reduction in communication cost. In general,
simulations support the notion that both managers and workers benefit from communication
cost reduction. Intuitively, the drop in the iceberg communication cost is similar to the
productivity increase in the production function in a Hick’s neutral way. However, deriving
an analytic result for the welfare impact is hard with the spatial reorganization, because the
real wages of managers and workers are both endogenous and depend on each other.15 We

14Formally, ICT openness, denoted by △, is defined as τ−θ.
15This is because both managers and workers consume housing, and housing prices enter into the welfare

functions of both types of agents.
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provide local analyses of agents’ welfare in Appendix B. In our quantitative analysis section,
we directly examine the welfare implications with calibrated parameters.
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Figure 2: Two-city Equilibrium: High-skill Employment Share in City 1 and City 2

Notes: In this simulation, we set θ = 5, T
1
θ

1 = 1.5, T
1
θ

2 = 1.0, Lm = 1, Lp = 2, γ = 0.1, α = 0.4, β = 0.4,
H1 = H2 = 1.0. The vertical axes show the share of managers in City 1 (the larger city) in the left panel and
that in City 2 (the smaller city) in the right panel. The horizontal axis shows the extent of ICT openness
△ ≡ τ−θ.

3.5 Multi-city Analysis

We now turn to a multi-city analysis to explore the heterogeneous effects of a reduction in
the fragmentation cost on city-level skill composition. The objective is to have a relatively
large number of cities to mimic the fact that the population of every city, even the largest
city, constitutes only a minor fraction of the total population, so a single city’s internet
improvement would not affect the other cities significantly. At the same time, we want to
avoid simulating too many cities, which is computationally intensive but does not provide
additional insights in a qualitative fashion. To this end, we choose an eight-city scenario, in
which we consider the case in which all cities have the same housing supply and there are
four big cities and four small cities with technology parameters given as follows:

T1 = T2 = T3 = T4 > T5 = T6 = T7 = T8.
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The results are displayed in Figure 3. Figure 3a shows that if there is an internet im-
provement in a small city, say City 8, which reduces the bilateral fragmentation costs between
the city and all the other seven cities, then the share of managers decreases in City 8. The
intuition is that as a small city, the low-skill wage here is relatively lower. When the city gets
more connected with the rest of the nation, some managers in those bigger cities find it more
profitable to relocate their production teams in the smaller city, which increases the local
demand for production workers there, giving rise to an inflow of the low-skill workers in the
smaller city. In contrast, Figure 3b shows that if there is an internet improvement in a big
city, say City 4, which reduces the bilateral fragmentation costs between this city and all the
other seven cities, then the share of managers increases in this city. The intuition is that as a
big city, the low-skill wage here is relatively higher. When the city gets more connected with
the rest of the nation, some managers from smaller cities find it more profitable to relocate to
that city themselves to leverage the strong agglomeration externalities there, while keeping
their production teams in other low-cost small cities. In doing so, larger cities attract an
inflow of high-skill labors.

These sets of results, together with the numerical simulations in the two-city case, illus-
trate our key theoretical result stated in Proposition 4. The logic behind this result can be
found in a standard Ricardian model. When there is a drop in communication cost—i.e.,
trade cost—different regions specialize in the activities in which they have a comparative
advantage. For larger cities, these are skill-intensive management-related tasks, whereas in
small cities, this corresponds to less skill-intensive standardized production. Given that fac-
tors are mobile within a country, changes to local labor demand driven by specialization will
imply a redistribution of high- and low- skill workers across space, with larger cities receiving
an inflow of high-skill workers and smaller cities an inflow of low-skill workers.

In summary, the model developed not only illustrates the key mechanisms of geographic
production fragmentation, but also generates the following testable predictions:

1. Larger cities specialize in skill-intensive activities;

2. Overtime (as internet improves), the extent of spatial segregation of skills increases;
and

3. Local internet improvement drives up the high-skill employment share in bigger cities
and reduces it in smaller cities.

In the next section, we provide empirical validation of the model predictions.
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Figure 3: Eight-City Equilibrium
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(a) Eight-City Equilibrium: Share of Managers
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(b) Eight-City Equilibrium: Share of Managers

Notes: Figures 3a and 3b display the results of an eight-city simulation. In this simulation, we set θ = 5,
T

1
θ

1 = T
1
θ

2 = T
1
θ

3 = T
1
θ

4 = 1.5, T
1
θ

5 = T
1
θ

6 = T
1
θ

7 = T
1
θ

8 = 1.0, Lm = 1, Lp = 2, γ = 0.1, α = 0.4, β = 0.4,
H1 = H2 = H3 = H4 = H5 = H6 = H7 = H8 = 1.0. The vertical axes show the share of managers in City 8
(the smaller city) in the top panel and that in City 4 (the larger city) in the bottom panel. The horizontal
axis shows the extent of ICT openness △ ≡ τ−θ.
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4 Data and Stylized Facts

In this section, we examine the model predictions using data on U.S. cities. We first doc-
ument stylized facts that establish the the relationship between spatial skill redistribution
and the trend of rising production fragmentation: (1) larger cities have become increasingly
specialized in skill-intensive activities; and (2) between 1980 and 2013, there had been a
substantial increase in the extent of spatial segregation of skills across U.S. cities. Next, we
validate the key theoretical result stated in Proposition 4 by examining the heterogeneous
effects of fragmentation cost reduction on the share of high-skill employment across cities of
different sizes.

4.1 Data Description

Our analysis mainly draws on the Integrated Public Use Micro Samples (IPUMS, Ruggles
et al., 2015). For 1980, we use 5% Census samples; for later years, we combine the 2011, 2012,
and 2013 1% American Community Survey (ACS) samples. Our worker sample consists of
individuals who were between the ages 16 and 64 and who were working in the year pre-
ceding the survey. Residents of institutional group quarters, such as prisons and psychiatric
institutions, are dropped along with unpaid family workers.

We define a city as a commuting zone (CZ), which is the geographic unit of analysis
developed by Tolbert and Sizer (1996). Each CZ is a cluster of counties characterized by
strong commuting ties within and weak commuting ties across zones. For our analysis, we
include 722 CZs in the continental U.S. We measure city size using the log of labor supply,
which is measured by the product of weeks worked times the usual number of hours worked
per week.16 All calculations are weighted by the Census sampling weight multiplied by the
labor supply weight.

Throughout the paper, we classify workers into high- and low-skill groups using their
occupation wage in 1980. Following Acemoglu and Autor (2011), we rank the skill levels
of different occupations, approximated by the mean log hourly wage of workers in each
occupation in 1980.17 We define high-skill workers as those whose occupation wage rank is

16We use labor supply instead of number of workers to measure city population to be consistent with our
use of hourly wage. The stylized facts are robust when we use number of workers, and are available upon
request.

17Examples of occupations in the lower, middle, and upper wage-rank distributions are child-care workers,
waiters and waitresses, housekeepers, and hotel clerks; machine operators, reception and information desk,
typists, and carpenters; CEOs, engineers, architects, financial managers, and software developers, respec-
tively.
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higher than 75% of occupations in 1980. We vary the cutoff in robustness checks to 67%
and 80%. Further robustness checks using education information to classify the high and
low skilled, with the high skilled defined as those with a college education or above, are also
provided in the Appendix.

The internet quality data is drawn from the U.S. Federal Communications Commission
(FCC) Fixed Broadband Deployment Database. Fixed broadband providers are required
to provide the lists of census blocks in which they offer service in at least one location
within the block. The database, available from December 2014, also provides additional
information about the quality of the service, including download and upload bandwidths
(reported in megabytes per second). We identify the maximum bandwidth at the block level
and compute the population-weighted internet quality at the CZ level.18

Finally, in the quantitative exercise in Section 5, we measure the extent of firm frag-
mentation using the Orbis Database for 2018 from Bureau van Dijk, which reports direct
shareholder information for subsidiary plants. We define a headquarters-subsidiary pair if
a headquarters has strictly more than 50% of the ownership of a given subsidiary. Using
location information, we construct a CZ-pair-level fragmentation measure that counts the
number of headquarters-subsidiary pairs for a given pair of CZs.

4.2 Stylized Facts on Skill Distribution

Using the IPUMS data set, we document patterns of spatial skill redistribution across U.S.
cities and investigate how the spatial pattern is related to domestic production fragmentation.

The left panel of Figure 4 depicts a well-known fact: The largest cities, measured by the
labor supply, are the ones that have the highest shares of high-skill employment in both 1980
and 2013. This pattern of skill specialization suggests comparative advantage differences
across cities of different sizes: Larger cities have a comparative advantage in more skill-
intensive activities, possibly due to stronger agglomeration forces, and smaller cities have a
comparative advantage in less skill-intensive activities, aided by the lower labor costs.

Moreover, this pattern of specialization became more pronounced over time. The right
panel of Figure 4 plots the change in the skilled share within a city between 1980 and 2013
against the corresponding city size in 1980.19 It shows that larger cities experienced a greater

18The 15-digit census block ID comes from the 2010 census. In computing the population-weighted av-
erage internet quality measures, we use the 2010 population information at the PUMA level—the smallest
geographic unit in the 2010 Census. We aggregate data from the more finely divided census block level to
the PUMA level using simple averages.

19Figure 12 in the Appendix provides the scatter plot for the raw data.
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Figure 4: Change in High-skill Employment Share with Respect to City Sizes

Notes: The left panel displays the regression line for the high-skill share (demeaned) in 1980 and 2013 against
log of 1980 labor supply. The right panel displays the change in the skilled share from 1980 to 2013. High
skill is defined as occupation rank above 75% using the 1980 mean of log hourly wage.
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increase in the share of high-skill employment between 1980 and 2013, thereby becoming
even more skill intensive. For example, the share of high-skill employment in the largest
city in the U.S. had risen by 4 percentage points, whereas it only increased by less than 1
percentage point in the bottom percentile of the city-size distribution. Table 1 reports the
formal statistical test, in which we regress changes in the share of high-skill employment at
the city level onto the city sizes measured by the log of 1980 city-level labor supply. We find
strong positive correlation between city size and magnitude of the change in the high-skill
employment share.20

Dependent variable: Change in high-skill employment share
1980-2013

(1) (2)
City Size 0.0036∗∗∗ 0.0050∗∗∗

(0.001) (0.001)
State fixed effect No Yes
Observations 722 722
R2 0.037 0.357
∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

Table 1: Change in High-skill Employment Share and City Size

Notes: City size is measured by the log of total labor supply in 1980 within a commuting zone. High-skill
workers are defined as workers whose occupation wage rank is higher than 75% of occupations in 1980.
Column (1) reports results using robust standard errors, and Column (2) reports results with standard
errors clustered by state.

The spatial redistribution of skills, established in the previous set of results, suggests an
increase in the spatial segregation of high- and low-skill workers over the period between 1980
and 2010. To study this spatial segregation more directly, we adopt a variant of the Kremer
and Maskin (1996) measure of the degree of segregation, i.e.,

ρ = 1
S

∑
s

[∑
c Ncs · (πcs − πs)2

Ns · πs · (1 − πs)

]
,

where s ∈ {1, 2, . . . , S} denotes a sector as defined by Census ind1990 codes, Ncs is the
employment in sector s and city c, Ns is the total sectoral employment, πcs = Nskilled

cs

Ncs
is

the high-skill employment share in sector s and city c, and πs = Nskilled
s

Ns
is the high-skill

20Table 14 in the Appendix reports robustness checks regarding the definition of the high skilled using a
67% occupation wage rank cutoff and an 80% occupation wage rank cutoff, as well as an analysis that uses
education to separate high- and low-skill workers.
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employment share in sector s.21 As shown in Table 2, the Kremer and Maskin (KM) index,
denoted by ρ, almost tripled from 1980 to 2013, indicating that the high skilled and low
skilled had become increasingly more spatially segregated.

Year ρ 95% Confidence Interval
1980 0.00746 (0.00741, 0.00752)
2013 0.0204 (0.0202, 0.0205)

Table 2: KM Segregation Index in 1980 and 2013

Notes: High-skill workers are defined as workers whose occupation wage rank is higher than 75% of
occupations in 1980. The 95% confidence interval of the index of segregation is:

F (N − J, J − 1)0.025

F (N − J, J − 1)0.025 + 1−ρ
ρ

≤ ρ̃ ≤ F (N − J, J − 1)0.975

F (N − J, J − 1)0.975 + 1−ρ
ρ

,

where J = C + S (Kremer and Maskin, 1996).

In summary, we establish that larger cities have a comparative advantage in skill-intensive
activities (Fact 1). This pattern of specialization became stronger over the past three decades,
as high- and low-skill workers become more segregated geographically (Fact 2). In Appendix
E, we provide further empirical evidence that links the observed increase in spatial segregation
with our proposed mechanism of increasing production fragmentation across U.S. cities. In
particular, we show that this pattern of segregation across space at the industry level is
closely related to production fragmentation activities in the U.S. economy.

4.3 Heterogeneous Effects of Internet Quality on City Skill Com-
position

To validate the key theoretical result stated in Proposition 4, we next empirically investigate
the heterogeneous effects of fragmentation cost reduction on the share of high-skill employ-
ment across cities of different sizes, i.e., local internet improvement drives up the high-skill
employment share in bigger cities and reduces it in smaller cities.

21This index measures how correlated the employment shares of different occupations are within a city-
sector. It is constructed as the ratio of the variance of share of the high-skill across cities to the variance of an
agent’s occupation status (i.e. the high skilled vs. the low skilled) of the a given sector, which is equivalent to
the R2 value of a regression of the share of high skilled on a series of city dummies. When ρ = 0, there is no
segregation; i.e. the high skilled and low skilled are always in the same cities; when ρ = 1, there is complete
spatial segregation of the high skilled and low skilled. We calculate the national average as an average value
across sectors to account for possible changes in industry composition within cities across time.
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4.3.1 Empirical Specification

We examine these predictions by presenting evidence from U.S. cities. We employ a long
difference exercise with the following specification:

∆tln = β1 + β2∆tqn + β3 (Ln,t0 × ∆tqn) + γXn,t0 + ϵn, (26)

where ∆tln ≡ ∆t

(
Lm

n

Ln

)
is the change in high-skill employment share in city n between 1980

and 2013, Ln,t0 is the log of total labor supply in city n in 1980, ∆tqn is the change in internet
quality in city n between 1980 and 2013, and Xn,t0 is other controls including state dummies
and initial city size.

Our key parameters of interest are the coefficients on internet quality and the interaction
term between city size and internet quality, i.e., β2 and β3. The model predicts that β2 < 0
and β3 > 0, which imply that internet quality improvement in a small city will reduce the
skilled employment share locally, while internet quality improvement in a big city will increase
the local skilled employment share.

As explained earlier, local internet quality is measured using FCC internet infrastructure
data. Specifically, we first calculate the simple average of upload and download bandwidths
at the PUMA level, denoted by bup

nj and bdown
nj in PUMA j of CZ n. The CZ-level internet

quality measure, qn, is defined as

qn =
∑

j∈G(n)

log(1 + bup
nj) + log(1 + bdown

nj )
2

popnj∑
k∈G(n)popnk

, (27)

where G(n) is the set of PUMAs in CZ n and popnj is the population in PUMA j of CZ
n.22 Given that there is virtually no commercial use of the internet in 1980, qn in 2013 also
represents the change in internet quality from 1980 to 2013, i.e., ∆tqn ≡ qn. Figure 5 shows
a map of internet qualities across CZs. Notably, there is large variation in internet quality
across different regions.

4.3.2 Internet Quality, City Size, and the Skilled Employment Share

Using the internet data, we run the specification in (26). The first two columns of Table 4
report the results. Columns (1) and (2) show the OLS results without and with state fixed
effects. Importantly, consistent with the model predictions, we find that β̂2 < 0 and β̂3 > 0.

22Taking log reduces potential outliers within a CZ. Adding 1 to the measured bandwidths ensures that
when there is no internet available, bup

nj = 0 and bdown
nj = 0, we have qn = 0 as well.
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96.0 − 984.2
64.1 − 96.0
48.5 − 64.1
37.0 − 48.5
26.0 − 37.0
11.5 − 26.0

Figure 5: Average Internet Bandwidth in U.S. Commuting Zones

Notes: This figure displays the average internet bandwidth in the U.S. at CZ level, calculated as the
population-weighted average of upload and download bandwidths. Bandwidths are measured in megabytes
per second.

Both are statistically significant at the 5% level. These two results jointly imply that better
internet quality reduces a small city’s high-skill employment share and increases a big city’s
high-skill employment share, thereby confirming our model’s predictions.

An obvious problem that arises when estimating (26) using OLS is that internet quality is
endogenous. Specifically, there are three major concerns: First, there may be long-run local
employment trends that drive both the internet provision and high-skill employment share.
Second, there may be unobserved local shocks that affect both internet quality improvement
and changes in high-skill share over time. The third concern is reverse causality: Local
demand shocks for skills may drive internet provision. It is worth noting, however, that for
both the second and third points above, the potential bias must work in opposite directions
for larger vs. smaller cities to generate results consistent with theoretical predictions. For
example, for the reserve causality to work here, one must form a theory whereby local internet
quality improvement is driven by a larger share of high-skill workers in bigger cities but a
lower share of high-skill workers in smaller cities. Similarly, for the second concern, the
omitted variable must both increase internet quality and high-skill share in bigger cities,
while increasing internet quality and low-skill share in smaller cities.

To address the first concern, in Columns (4) and (5) of Table 4, we perform a falsification
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test by replacing the left-hand-side variable with the change in the high-skill employment
share from an earlier period, between 1950 and 1980. The estimates show that there is
indeed no role for later development of the internet in the change in skilled employment
share in earlier years, thus ruling out the existence of long-run local employment trends.

To address the second and third concerns, we consider an instrumental variable approach,
using topographic elevation and initial telecommunication infrastructure before 1980 as the
exogenous determinant in the provision of broadband internet. The use of geographic el-
ements, such as topography, as a means for identification frameworks is common in many
empirical studies because of their generally random and predetermined nature, as we see in,
e.g., Miguel, Satyanath and Sergenti (2004) and Juhasz and Steinwender (2019). We follow
this general approach and develop an instrument for broadband internet in the U.S. using
terrain elevations. The instrument leverages a unique feature of the US broadband internet
provision, in which, unlike many other developed countries, the most used technology for
signaling distribution relies on cable infrastructure. The key intuition is that low-lying areas
are more prone to floods and exhibit higher summer temperatures, and such climatic con-
ditions play a crucial role in driving up the costs of deployment and maintenance of cable
broadband infrastructure, thereby leading to worse internet qualities in these areas (Jaber,
2013; Amorim, Lima and Sampaio, 2022). To formally establish the predictive power of the
instrument on internet provision, we use the following “stage-zero” analysis:

qn = α1 + α2elevationn + α3ini_telephone_penetrationn + Xn + ϵn, (28)

where qn is the population-weighted log of average upload and download speeds in CZ n

defined in (27), Elevationn is the population-weighted average terrain elevation in CZ n, and
Xn includes city size and dummy variables for state fixed effects. Additionally, we control
for initial telephone penetration in the CZ, ini_telephone_penetrationn, which is calculated
as the average fraction of households that have access to telephones in 1970 and 1980 within
CZ n. In Table 3, we find that α̂2 = 0.193 and α̂3 = 2.849, both of which are statistically
significant at the 5% level. This shows that all else equal, places with higher terrain tend to
receive better internet, lending support to the relevance assumption of the instrument.

In addition to the relevance condition, the instrument must also satisfy the following
exclusion restriction: Terrain level must affect the change in skill share only through its
impact on internet quality. This is likely to hold for two reasons. First, while terrain is
likely correlated with other factors that may affect the level in the share of high-skill workers
through other channels, it is unlikely that they affect the flow of high-skill workers between
the two periods. For this to happen, the correlation between the instruments and these other
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Dependent variable: Internet quality
(1) (2)

elevation 0.214** 0.193**
(0.085) (0.080)

initial telephone penetration 2.849***
(0.656)

State Fixed Effect Y Y
Observations 722 722
R2 0.442 0.461

Table 3: Terrain Elevation, Initial Telephone Penetration and Internet Quality

Notes: This table reports the relationship between internet quality (year 2014) and terrain elevation and
initial telephone penetration (before 1980). Robust standard errors are in parentheses. City size and state
fixed effects are controls.

factors will have to become stronger over time. Next, the correlations will also have to be
systematically different across city sizes, i.e., the correlations are positive for larger cities
(thereby attracting an inflow of high-skill workers) and negative for smaller cities (thereby
resulting in an outflow of high-skill workers).

Results from the 2SLS estimation, which are shown in Column (3) of Table 4 remain
qualitatively consistent from the OLS estimates. The point estimates of the coefficients on
qn and Ln,t0 × qn are greater in value than the OLS estimates. This may be due to classical
measurement errors in the regressors, which would result in attenuation bias. Crucially, the
model predicts that β̂2 < 0 and β̂3 > 0 continue to hold. In Column (6), we further apply
the 2SLS to our placebo test for the 1950-1980 change in the share of high-skill employment.
We draw a similar conclusion there is no long-run local employment trend that drives our
results on internet quality and high-skill employment share change.
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Dependent variable: Change in the share of high-skill employment
1980-2013 1950-1980

OLS 2SLS OLS 2SLS
Estimates (1) (2) (3) (4) (5) (6)
qn -.023∗∗ -.029∗∗ -.137∗∗∗ -.005 -.012 -.013

(.009) (.012) (.034) (.017) (.020) (.037)
Ln,t0 × qn .0022∗∗ .0028∗∗ .011∗∗∗ -0.000 .001 .001

(.0008) (.0011) (.003) (.001) (.001) (.003)
State Fixed Effects No Yes Yes No Yes Yes
Observations 722 722 722 722 722 722
R2 .045 .360 -0.076 .048 .284 -0.338
S-W F-stats (First Stage)
Internet quality 12.92 12.92
Internet quality × city size 11.15 11.15

Table 4: Heterogeneous Effects of Internet Improvement on Skill Shares Across Cities

Notes: City size is measured by log(labor supply in 1980) and is always included as a control variable.
Standard errors are in parentheses. Robust standard errors are used when there is no state fixed effect.
Standard errors are clustered at the state level when there are state fixed effects. We also report
Sanderson-Windmeijer (S-W) F-statistics for the first-stage regressions. ∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗
p < 0.01

5 Quantitative Analysis

Empirical validation of key model predictions lends credibility to our theoretical framework.
We next carry out quantitative analysis using the model. We first calibrate the model pa-
rameters, then conduct two counterfactual exercises by changing internet qualities in the US.
For both exercises, we consider the consequences of the counterfactual changes in internet
qualities on spatial skill distributions and real wages of high- and low-skill workers.

5.1 Parametric assumptions

For the quantitative assessment, we maintain the functional form assumption for the agglom-
eration force: f(Lm

n ) = (Lm
n )γ, where γ ≥ 0 is the parameter measuring the extent of regional

agglomeration. Moreover, we parameterize the bilateral fragmentation cost as follows:

log τnc = λnc + δd log dnc + δIqnc. (29)
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Equation (29) assumes that the fragmentation cost between two cities n and c takes a semi-
parametric form, i.e., a power function of the bilateral geographic distance dnc between the
two cities and the quality of the internet connection between the two cities qnc, in addition
to a term λnc that summarizes all other associated costs—e.g., if the two cities are located in
the same state, and if the two cities share a common border. We refer to δd as the distance
elasticity of joint production and δI as the internet elasticity of joint production.

For the bilateral internet connection, we assume it adopts a quasi-symmetric form such
that

qnc = qn × qc, (30)

where qn is city n’s internet quality defined in (27). Note that by using the interaction term
qn × qc, we allow potential complementarity in both cities’ internet quality. For instance, if
there is no internet in city c, then the bilateral communication cost between c and n will
remain very high, regardless of n’s internet quality.

One concern is that internet quality may also change trade cost in goods, which can
possibly change the skill distribution as well. In Appendix F, we empirically evaluate the
role of internet quality in goods trade using the commodity flow survey data. We show that
the internet does not have any significant impact on bilateral goods trade. Admittedly, the
internet has certainly changed the economy in many other ways in addition to reducing the
fragmentation cost. However, focusing on the fragmentation cost is useful for understanding
the impact of the internet through this specific channel.

5.2 Calibration of Parameters

In this section, we calibrate model parameters. We begin by assigning values to parameters
that have been estimated in past literature. We then describe in detail the estimation proce-
dures for the other parameters, including agglomeration externalities, dispersion of manager
productivity, city-specific housing supply, and technology parameter, as well as the fragmen-
tation costs.

Parameters from Previous Literature

For some parameters in our model that are commonly used in the literature, we adopt their
values directly. Specifically, we use existing estimates for the values of the share of spending
on housing, 1−α, and the span of control, β. We set 1−α at 0.24 (Davis and Ortalo-Magné,
2011; Behrens, Duranton and Robert-Nicoud, 2014) and β at 0.53 (Buera and Shin, 2013).
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See Table 5 for details.

Parameter Value Description Moment / Source
1 − α 0.24 Share of spending Literature

on housing
β 0.53 Span of control Literature
γ 0.010 Agglomeration externality Elasticity of worker

wage wrt city size
θ 4.11 Frechét dispersion parameter High-skill workers

income distribution
δd 0.230 Distance elasticity of Implied from gravity

joint productions estimates
δI -0.010 Internet elasticity of Implied from gravity

joint productions estimates

Table 5: Calibrated Model Parameters

Calibration of γ

The strength of agglomeration forces γ is set to target the elasticity of average worker wage
with respect to city size. The implied value of γ is 0.010, which is broadly in line with
the agglomeration externalities estimated in past literature (see, e.g., Combes and Gobillon,
2015). In Appendix H, we conduct a sensitivity analysis to show that changing the value of
γ does not impact the results in a significant manner.23

Calibration of θ

The Frechét distribution parameter θ determines the dispersion of managers’ income across
cities. From the cumulative distribution function of manager’s income in (12), we obtain

− log[− log G(π)] = θ(1 − β) log π + log[(Lm
n )γθΦn] + constant. (31)

We use the 3-year ACS 2011-2013 data to obtain the high-skilled hourly wage distribution.
Using the individual hourly wage information, we run an OLS regression with city fixed

23Note that γ is distinct from the observed productivity advantages of cities. In the model, larger cities are
more productive for three reasons: (1) the “raw” agglomeration externalities captured by γ; (2) the exogenous
productivity differences across cities implied by Tn; and (3) the sorting of high- and low-skill workers because
of fragmentation. Furthermore, γ is a term that summarizes multiple aspects of skill-biased agglomeration
externalities, including productivity, housing and amenities (Diamond, 2016).
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effects, which absorbs the log[(Lm
n )γθΦn] term. The OLS estimation then gives θ(1−β) = 1.93,

which implies a value of 4.11 for θ.

Calibration of Fragmentation Cost

Recall that the bilateral fragmentation cost is assumed to take the following functional form:

log τnc = λnc + δd log dnc + δIqnc.

The key parameter of interest is δI , the elasticity of fragmentation with respect to internet
quality. The estimation difficulty is that the aggregate cross-city fragmentation cost τnc is
not directly observed. To overcome this, we rely on the gravity equation derived in (9). We
first compute Xnc, the number of occurrences of the joint productions in city c that originate
from city n, by multiplying both sides of (9) by the total number of managers in origin city
Lm

n :

Xnc = Lm
n

Tnτ−θ
nc w−βθ

c

Φn

. (32)

Normalizing by Xnn and using the assumption that τnn = 1, we obtain the following
function that links τnc with city-level worker wages and Xnc:

τnc =
(

wβθ
c Xnc

wβθ
n Xnn

)−1/θ

. (33)

Since wn is directly observed our data set, we can calculate τnc using additional information
on cross-city joint productions, i.e., Xnc. We rely on multi-locational production data to
measure Xnc. The data are constructed using the Orbis Database, which reports ownership
information for subsidiary plants. We define a headquarters-subsidiary pair if a headquarters
has strictly more than 50% of the ownership of a given subsidiary. Moreover, the database
reports the locations of the subsidiary and the headquarters, which allows us to count the
number of headquarters-subsidiary pairs at the city-pair level. Specifically, for each city c,
we calculate Xnc by counting the number of subsidiaries that belong to headquarters located
in a given commuting zone n.

Admittedly, these headquarters-subsidiary pairs by no means capture all of the cross-city
joint-production forms; e.g., firm’s domestic outsourcing is not included. However, given this
data limitation, we view that this headquarters-subsidiary pair as a reasonable starting point
to study this question, for two reasons: First, the headquarters-subsidiary relationship fits
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the high-skill and low-skill joint production setting well in the theoretical part; and second,
it identifies a specific channel through which firms can achieve fragmented production.

Using the estimates of τnc from (33), we can estimate (29) using the following specification:

log τnc = χn + ιc + δd log dnc + δIqnc + ΘHnc + εnc, (34)

where χn and ιc are origin and destination fixed effects, respectively, dnc is the distance
between two cities n and c, qnc denotes the bilateral internet connectivity between city n

and city c as defined in (30), and Hnc is a vector of city-pair controls, including state pair
fixed effects, the interaction between city sizes, dummies for two cities sharing a border,
dissimilarities in the language spoken, and racial mix.24

We estimate Equation (34), where coefficient estimates δ̂d and δ̂I are reported in Table 6.
We find that as expected, greater geographical distance reduces the number of headquarters-
subsidiary pairs. More importantly, the result shows that a higher quality of bilateral internet
connectivity induces more headquarters-subsidiary pairs. Additional sensitivity analysis by
changing the values of δI is presented in Appendix I.

Dependent variable: Fragmentation cost between n and c (τnc)
Estimates (1) (2)
log dnc 0.283*** 0.134***

(0.002) (0.004)
qnc -0.048*** -0.010***

(0.003) (0.003)
Controls No Yes
City Fixed Effects Yes Yes
N 44,188 44,023

Table 6: Gravity Equation Estimates

Notes: Robust standard errors in parentheses. Significance levels: * 10%, ** 5%, ***1%. Controls include a
dummy on whether two CZs share a border, dissimilarity in language spoken, dissimilarity in race mix,
interaction between both two CZs’ size and state pair fixed effects.

24The dissimilarity in language spoken is constructed as follows: For each commuting zone, we use 1980
census data to calculate the fractions of people that speak English, Spanish, French, German, and other
languages at home. Then for any two commuting zones, we compute the Euclidean distance of the fractions.
The dissimilarity in race is constructed using four racial categories—white, black, native, and others—and
follow the same approach as in computing the dissimilarity in language spoken.
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Housing Supply Hn

Another set of parameters in the model is the exogenous housing supply, which is estimated
using ACS 2011-2013 data on the average city-level wage wn for workers and total labor
income Wn of the city, i.e.,

Hn

Hn′
= Wn/w

1
(1−α)
n

Wn′/w
1

(1−α)
n′

. (35)

We normalize the housing supply in CZ with code 00100 as 1—i.e., HCZ00100 = 1—and then
compute Hn for other cities using the ratio above.

City Technology Tn

The final step requires estimating the city-specific technology parameter Tn. Combining the
definition for the city-level fragmentation potential Φn in (8) and the equilibrium condition
for manager’s living location choice

γ

1 − β
log Lm

n

Lm
c

+ 1
θ(1 − β) log Φn

Φc

= (1 − α) log pn

pc

= log wn

wc

,

we obtain:

γ

1 − β
log Lm

n

Lm
c

+ 1
θ(1 − β) log Tn

Tc

+ 1
θ(1 − β) log

∑
k(τnkwβ

k )−θ∑
k(τckwβ

c )−θ
= log wn

wc

. (36)

Given the set of {Lm
n , τ−θ

nc , wn}, we can back out Tn. We normalize TCZ00100 = 1 and then
pick Tn so that the model-implied values for log Tn

Tc
match the corresponding values estimated.

Figure 6 shows the model-generated technology parameters. We can see that CZs with greater
technology parameters are concentrated in large cities (e.g., New York, San Francisco, and
Seattle) and other denser areas along the coasts. Regressing the calibrated values of log(Tn)
on city sizes yields a positive and statistically significant coefficient, with point estimate at
0.0595 and a 95% confidence interval at [0.0378, 0.0811].

Finally, we calibrate our model parameters without targeting the number of workers in
each city directly. However, from the model, in each city, the total labor income equals the
sum of the number of workers of each type multiplied by the average income of each type.
As an external validation test, we check whether our calibrated model delivers a good match
of the number of low-skill labor (thus the total number of workers) in each city. Figure 13 in
Appendix N confirms that this is indeed the case.
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2.00 − 7.82

1.60 − 2.00

1.39 − 1.60

1.16 − 1.39

0.95 − 1.16

0.25 − 0.95

No data

Figure 6: City-specific Technology Parameters

Notes: The figure shows the model-generated technology parameter (Tn) in 2013.

5.3 Internet Infrastructure, Skill Relocation, and Welfare

We perform an exercise in which we assume there is no internet quality improvement between
1980 and 2013. This counterfactual scenario allows us to evaluate the role of internet infras-
tructure in the skill relocation in the U.S. through production fragmentation, and assess the
impact of internet improvement on welfare of high- and low-skill workers.

Specifically, we first take the calibrated parameters in 2013 as given. We then solve the
model under two different sets of bilateral fragmentation costs. The first set of fragmen-
tation costs is directly obtained from the data in 2013 using equation (33). The second
set of fragmentation costs is derived by assuming a counterfactual scenario in which the
cost τ̃nc is otherwise identical to the estimated cost except for internet connectivity—i.e.,
τ̃nc = exp(log(τnc − δ̂Iqnc)). The model is solved numerically under these two scenarios for
722 cities, using a global method. Appendix G provides details of the numerical methodology.

We then compare the high-skill share in each city under the two scenarios. The reduction
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in the share of high-skill workers informs us of the contribution of internet technology in
driving the observed changes in skill concentration across space. Figure 7 visualizes the
positive relationship between the change in high-skill employment share and city size. In
the left panel, both the baseline scenario (with internet) and the counterfactual scenario
(without internet) exhibit a positive slope. The flatter slope under the counterfactual scenario
shows that the extent of skill redistribution would have been smaller without internet quality
improvement. Formally, we regress the change in high-skill share on city size and obtain a
coefficient of 0.0031 when state fixed effects are included, as shown in Table 7. Comparing
this against the observed skill redistribution reported in Table 1, it implies that without
internet connectivity, the observed skill redistribution in the US would have been reduced by
about 0.0030/0.00503 = 60%.
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Figure 7: Simulated Relationship between High-skill Employment Share and City Size

Notes: This figure displays the model generated change in high-skill employment share when moving the
economy from the case without internet and with internet in 2013. City size is measured as log(labor
supply in 1980), as in regression Table 1.

We also study the welfare implications of internet infrastructure through the lens of pro-
duction fragmentation and find that its impact is sizable. With the internet, production
workers’ welfare (real consumption) increases by 3.62% and managers’ welfare by 3.39%.
The intuition is that the reduction in fragmentation cost is effectively technological progress
from the whole economy’s point of view. Moreover, the reduction in fragmentation cost does
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Dependent variable: Change in high-skill employment share
with internet

(1) (2)
City Size 0.0031∗∗∗ 0.0030∗∗∗

(0.0006) (0.0009)
State fixed effects No Yes
Observations 722 722
R2 0.050 0.132
∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

Table 7: Model-implied Change in High-skill Employment Share and City Size

Notes: The dependent variable is the change in high-skill employment share when moving the economy
from the case without the internet to the case with the internet. City size is measured by log(labor supply
in 1980). Column (1) reports results using robust standard errors, and Column (2) with standard errors
clustered by state.

not exhibit skill bias and benefits the joint production of managers and production workers.
Therefore, it increases the welfare of managers and production workers in similar magnitudes.
Additionally, internet technological progress, as shown above, drives spatial reorganization
of production, by changing local demand for and high- and low-skill workers across cities of
different sizes. This spatial reorganization benefits workers of both skill types as well.

The welfare implications from internet improvement can be attributed to two channels:
the direct effect driven by the drop in the iceberg fragmentation cost τ , and the indirect
general equilibrium effect from spatial reorganization. We further decompose the welfare
changes into these two components. To get the first component, we fix all the production
teams in the scenario without the internet. Suppose that there are Lm

nc managers from city
n cooperate with Lp

nc production workers from city c to produce, calculated in the scenario
without the internet. The total output is also a function of the bilateral fragmentation cost
τnc since it works as an iceberg cost in our model. We denote their output as 1

τnc
Snc(Lm

nc, Lp
nc),

where Snc is the aggregate production function at the bilateral level (see Appendix J for the
detailed derivations of function Snc). Since in each team, managers get 1 − β share of the
output and production workers get β share of the output. We then compute the housing
price in any city n as the total income in city n divided by housing supply in city n

px
n =

(1 − β)∑c
1

τx
nc

Snc(Lm
nc, Lp

nc) + β
∑

c
1

τx
cn

Scn(Lm
cn, Lp

cn)
Hn

, (37)

where x denote the two scenarios, “with internet” and “without internet.” We then compute
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the log-change in the real income of managers and production workers under the two sets
of fragmentation cost τwith internet

nc and τno internet
nc . For managers, the change in real income

directly due to the drop in fragmentation cost is

log
[
(1 − β)

∑
n,c

1
τwith internet

nc

Snc(Lm
nc, Lp

nc)
(pwith internet

n )1−α

]
− log

[
(1 − β)

∑
n,c

1
τno internet

nc

Snc(Lm
nc, Lp

nc)
(pno internet

n )1−α

]
.

(38)
For production workers, the change in real income directly due to the drop in fragmentation
cost is

log
[
β
∑
n,c

1
τwith internet

cn

Scn(Lm
cn, Lp

cn)
(pwith internet

n )1−α

]
− log

[
β
∑
n,c

1
τno internet

cn

Scn(Lm
cn, Lp

cn)
(pno internet

n )1−α

]
. (39)

The difference between the total changes in welfare and the above changes—which is the direct
welfare implications from internet improvement—gives the welfare change component due to
spatial reorganization for managers and production workers, respectively. Table 8 reports the
decomposition of welfare changes. While the direct effect of the drop in the fragmentation
cost accounts for the major increase in both managers’ and workers’ real incomes, the general
equilibrium effect of spatial reorganization on welfare is also not negligible. It accounts for
more than one seventh of the welfare increase for managers and about one fifth of the welfare
increase for production workers.

∆ Managers’ Welfare ∆ Workers’ Welfare
Directly Due to Fragmentation Cost Change 2.89% 2.93%
Due to Spatial Reorganization 0.50% 0.69%
Total 3.39% 3.62%

Table 8: A Decomposition of Welfare Change

Notes: This table shows the total welfare (real income) increase and decompose it to two components. The
first component is directly due to the change in fragmentation cost. The second component is the remaining
part and labeled as “due to spatial reorganization”.

5.4 Narrowing the Digital Divide

In the final analysis, we conduct a policy experiment to assess the potential effects of im-
proving internet access and quality in underdeveloped areas, a common objective for many
governments and international organizations aiming to bridge the “digital divide.” For ex-
ample, the BEAD Program plans to invest over $40 billion to provide reliable and affordable
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high-speed internet to both residential and business locations in the US. Given the significant
disparities in internet quality across U.S. cities, we are interested in understanding the poten-
tial impact of improving internet quality in currently underserved areas on skill redistribution
and overall welfare. To examine this, we consider an experiment that focuses on enhancing
the internet speed for underserved business units in each city—specifically those with speeds
below 100/25 Mbps, in line with the BEAD program’s objectives. We hypothesize a scenario
where the government allocates $20 billion (approximately half of the BEAD funding) to
upgrade the internet speed of these underserved business locations to 300/300 Mbps.25
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Figure 8: Change in High-skill Share after Improving Internet Quality

Notes: This figure displays the regression line of the change in the skilled share against city size after
improving underserved locations’ internet speed in U.S. The estimated slope is 0.0085 with a robust
standard error 0.0014.

Figure 8 shows the relationship between the model-generated change in the high-skilled
workforce share and city size following the simulated improvements in internet quality. The
positive correlation indicates that, on average, larger cities will attract a relatively greater
proportion of high-skilled workers, thereby intensifying the spatial divergence of skills across
cities. The welfare implications of this shift are significant: our findings show that the welfare

25We compiled a dataset detailing the total number of business locations and the number of underserved
business locations in each city. Assuming that the government spends $30 per month (a figure close to the
fees charged by U.S. internet providers) to improve internet speed at one underserved business location over
a 5-year period, we calculate the proportion of underserved business locations that could be covered by this
funding. This allows us to estimate the average increase in internet quality across cities.
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of production workers would increase by 0.27%, while managers’ welfare would also rise by
0.27%. This welfare improvement is partly driven by the direct benefits of enhanced internet
quality and partly by the general equilibrium effect—whereby managers reorganize their pro-
duction teams across cities to capitalize on the comparative advantages of different locations.
These results suggest that improving internet quality in poorly connected areas can yield sub-
stantial benefits. This analysis provides a quantitative assessment of internet infrastructure
investments, offering valuable insights for cost-benefit analyses of policies aimed at reducing
the digital divide.

6 Conclusion

This paper examines the impact of reduced communication costs on geographic fragmentation
of domestic production. Our spatial equilibrium model, which incorporates cross-city produc-
tion and skill heterogeneity, demonstrates that advancements in communication technologies
facilitate geographic fragmentation, leading to significant changes in the spatial organiza-
tion of production. These changes, in turn, drive the concentration of high-skill workers in
larger cities and reduce their presence in smaller cities, contributing to a new pattern of skill
distribution.

Our empirical findings, validated through a novel instrumental variable approach, con-
firm that improved internet connectivity plays a pivotal role in these spatial redistributions.
Quantitatively, we show that internet improvements account for a significant share of the ob-
served changes in skill distribution from 1980 to 2013, highlighting the critical role of reduced
communication costs in shaping modern labor markets. These changes have broader welfare
implications, arising from both direct effects of reducing fragmentatio costs and the indi-
rect general equilibrium effect of spatial reorganization. While our paper abstracts from the
complexities of firm boundaries and simplifies the production organization structure to two
layers, future research could benefit from explicitly considering the role of firm boundaries
and the multi-layered hierarchy of production in geographic fragmentation.
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Online Appendix

A Proofs

This section provides proofs to results presented in Section 2.

A.1 Proof of Proposition 1

Proof. Denote Xnc = ānc

τncwβ
c
, then

Gnc(x) = Pr(Xnc ≤ x) = Pr(ānc ≤ τncw
β
c x) = e−Tn(τncwβ

c )−θx−θ

.

Define
X = max

c
Xnc.

Then
Gn(x) = Pr(X ≤ x) = ΠN

c=1Gnc(x) = e−Φnx−θ

.

The probability that city c provides the highest x to n is:

Pr[Xnc ≥ max{xns; s ̸= c}] =
∫ ∞

0
Πs ̸=c[Gns(x)]dGnc(x) = Tn(τncw

β
c )−θ

Φn

,

where Φn ≡ ∑
k Tn(τnkwβ

k )−θ.

A.2 Proof of Proposition 2

Proof.

Pr(πn ≤ k) = Pr

[
β

β
1−β (1 − β)[f(Lm

n )]
1

1−β max
c

{( ānc

τncw
β
c

)
1

1−β } ≤ k

]

= Pr
[
max

c
ānc ≤ β−β(1 − β)−(1−β)τncw

β
c k1−β/[f(Lm

n )]
]

= e−[f(Lm
n )]θΦn[β−β(1−β)−(1−β)]−θk−θ(1−β)

.
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A.3 Proof of Proposition 3

Combining equations (24) and (25) by eliminating log wn − log wn′ , we obtain that

[1 + γ − γ

1 − α
][log Lm

n − log Lm
n′ ] = [ 1

1 − α
− 1]1

θ
log Tn

Tn′
.

Therefore,
log Lm

n − log Lm
n′ = κ[log Tn − log Tn′ ], (40)

where

κ =
1

1−α
− 1

1 + γ − γ
1−α

1
θ

> 0,

given that 1 + γ > γ
1−α

.

That is,
Lm

n

Lm
n′

=
(

Tn

Tn′

)κ

Then we get that
Lm

n ∝ T κ
n . (41)

From equation (24), we have

log wn − log wn′ = γ[log Lm
n − log Lm

n′ ] + 1
θ

[log Tn − log Tn′ ] = [γκ + 1
θ

][log Tn − log Tn′ ].

And from equation (19), we have workers’ mass in city n is given by

Lp
n ∝ w−1

n Tnw−βθ
n T

1
θ(1−β) −1

n w
−βθ[ 1

θ(1−β) −1]
n (Lm

n )
γ

1−β
+1.

We can combine the above three equations to arrive at

Lp
n ∝ T κ

n . (42)

It is then also clear that given a set of {Tn}, the equilibrium exists and is unique.

The skill premium is read directly from equation (56). When τnc → ∞, ∀ n ̸= c, it is
written as

γ

1 − β
log Lm

n + 1
1 − β

log T
1
θ

n − 1
1 − β

log wn.
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From equation (19), we get

log wn = log T
1
θ

n + (γ + 1 − β) log Lm
n − (1 − β) log Lp

n + (1 − β) log η.

The skill premium is then equal to a constant. Note that η is only a function of β and θ. So
the skill premium is irrelevant with γ.

A.4 Proof of Proposition 4

Proof. If ∆ is very small, we can do a first-order expansion with respect to ∆ around ∆ = 0.

1
θ(1 − β) [∆wβθ − βθ log w − ∆w−βθ] + 1

1 − β
[log T

1
θ

1 Lm γ
1 − log T

1
θ

2 Lm γ
2 ] = log w

1
1 − α

log w = − β

1 − β
log w +

(
γ

1 − β
+ 1

)
[log Lm

1 − log Lm
2 ]

+ 1
1 − β

[log T
1
θ

1 − log T
1
θ

2 ]+(
1

θ(1 − β)(wβθ − w−βθ) + η

η + ζ
(w−βθ − wβθ + 1

x
− x)

)
∆,

where

x =
(

T1

T2

) 1
θ(1−β)

w− β
1−β

+βθlm γ
1−β

+1.

That is,

log w = γ log lm + log T
1
θ

1 − log T
1
θ

2 + 1
θ

∆(wβθ − w−βθ)

(
1

1 − α
+ β

1 − β

)
log w =

(
γ

1 − β
+ 1

)
log lm + 1

1 − β
[log T

1
θ

1 − log T
1
θ

2 ]+
(

1
θ(1 − β)(wβθ − w−βθ) + η

η + ζ
(w−βθ − wβθ + 1

x
− x)

)
∆.
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They lead to

(γ + 1 − γ

1 − α
) log lm = α

1 − α
[log T

1
θ

1 − log T
1
θ

2 ] +
(

1
1 − α

+ β

1 − β

)
1
θ

(wβθ − w−βθ)∆

−
(

1
θ(1 − β)(wβθ − w−βθ) + η

η + ζ
(w−βθ − wβθ + 1

x
− x)

)
∆.

That is,

(γ + 1 − γ

1 − α
) log lm = α

1 − α
[log T

1
θ

1 − log T
1
θ

2 ] + α

1 − α

1
θ

(wβθ − w−βθ)∆

− η

η + ζ
(w−βθ − wβθ + 1

x
− x)∆.

By expanding w and x around ∆ = 0, we finally arrive at

(γ + 1 − γ

1 − α
) log lm = α

1 − α
[log T

1
θ

1 − log T
1
θ

2 ] + [ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ)∆

+ (x̂ − 1
x̂

)∆

where

x̂ =
(

T1

T2

) 1
θ

(1−β)(1+βθ+ α
1−α

)
> 1,

and

ŵ =
(

T1

T2

) 1
θ

1
γ+1− γ

1−α > 1

are solutions to x and w when ∆ = 0.

Thus, managers will relocate to the bigger city with internet improvement. It is also easy
to see that log w increases and log p increases locally with internet improvement. Moreover,
we examine the role of agglomeration force γ from the following:

∂ log lm

∂∆ = 1
γ + 1 − γ

1−α

[
[ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ) + (x̂ − 1

x̂
)
]

.

A larger γ implies a bigger reallocation of high-skilled to the bigger city.
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Also,

Lp1

Lp2
= ηw−1

1 T1(wβ
1 )−θΦ

1
θ(1−β) −1
1 L

m γ
1−β

+1
1 + ηw−1

1 T2(wβ
1 )−θ∆Φ

1
θ(1−β) −1
2 L

m γ
1−β

+1
2

ηw−1
2 T2(wβ

2 )−θΦ
1

θ(1−β) −1
2 L

m γ
1−β

+1
2 + ηw−1

2 T1(wβ
2 )−θ∆Φ

1
θ(1−β) −1
1 L

m γ
1−β

+1
1

.

Then

Lp1

Lp2
= T11/T22w

−1(wβ)−θΦ
1

θ(1−β) −1
12 (Lm

1 /Lm
2 )

γ
1−β

+1 + T −θ
2 /T −θ

2 w−1(wβ)−θ∆

1 + T1/T2∆Φ
1

θ(1−β) −1
12 (Lm

1 /Lm
2 )

γ
1−β

+1

lp = T1/T2w
−1(wβ)−θΦ

1
θ(1−β) −1
12 (Lm

1 /Lm
2 )

γ
1−β

+1 + T2/T2w
−1(wβ)−θ∆

1 + T1/T2∆Φ
1

θ(1−β) −1
12 (Lm

1 /Lm
2 )

γ
1−β

+1

lp =

(
T1
T2

)
w−1−βθ

(
Φ1
Φ2

) 1
θ(1−β) −1

lm γ
1−β

+1 + w−1−βθ∆

1 +
(

T1
T2

) (
Φ1
Φ2

) 1
θ(1−β) −1

lm γ
1−β

+1∆
.

When the cross-city communication cost is infinite,

l̂p =
(

T1

T2

)
ŵ− 1

1−β

(
T1

T2

) 1
θ(1−β) −1

l̂
γ

1−β
+1

m =
(

T1

T2

) 1
θ

α
1−α

γ+1− γ
1−α .

That gives

log lp =
α

1−α

γ + 1 − γ
1−α

[log T
1
θ

1 −log T
1
θ

2 ]−
(T1

T2

) 1
θ(1−β)

w− β
1−β

+βθlm γ
1−β

+1 −
(

T1

T2

)− 1
θ(1−β)

w
β

1−β
−βθlm − γ

1−β
−1

∆

which leads to

log lp =
α

1−α

γ + 1 − γ
1−α

[log T
1
θ

1 − log T
1
θ

2 ] −
[
ŵ1+βθ l̂p − ŵ−1−βθ l̂−1

p

]
∆.

It is clear that ∆ increase will drive production workers from big cities to small cities. More-
over, we examine the role of agglomeration force γ from the following:

∂ log lp

∂∆ = −
[
ŵ1+βθ l̂p − ŵ−1−βθ l̂−1

p

]
.

A larger γ implies a bigger reallocation of the low skilled to the smaller city.
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B Skill Premium and Welfare in the Two-city Case

This section presents welfare analysis for a two-city version of the baseline model presented
in Section 3.4.

We first do a first-order expansion around ∆ = 0. The skill premium is

sp = γ

1 − β
log Lm

1 + 1
(1 − β)θ log Φ1 − log w1

= γ

1 − β
log Lm

1 + 1
(1 − β)θ [log T1 + log(1 + ∆wβθ)] − 1

1 − β
log w1

= γ

1 − β
log Lm

1 + 1
(1 − β)θ [log T1 + (1 + ∆ŵβθ)] − 1

1 − β
log w1, (43)

where w = w1/w2.

Note that the market-clearing condition for production workers is

T1Φ
1

θ(1−β) −1
1 Lm

1
γ

1−β
+1(w−βθ−1

1 + ∆w−βθ−1
2 ) + T2Φ

1
θ(1−β) −1
2 Lm

2
γ

1−β
+1(w−βθ−1

2 + ∆w−βθ−1
1 ) = Lp

η
.

That is,

T
1

θ(1−β)
1 (w−βθ

1 + ∆w−βθ
2 )

1
θ(1−β) −1Lm

1
γ

1−β
+1(w−βθ−1

1 + ∆w−βθ−1
2 )

+T
1

θ(1−β)
2 (∆w−βθ

1 + w−βθ
2 )

1
θ(1−β) −1Lm

2
γ

1−β
+1(∆w−βθ−1

1 + w−βθ−1
2 ) = Lp

η
. (44)

Rearrange to get

T
1

θ(1−β)
1 (1 + ∆wβθ)

1
θ(1−β) −1(1 + ∆wβθ+1)

+T
1

θ(1−β)
2 (∆ + wβθ)

1
θ(1−β) −1(Lm

1 /Lm
2 )− γ

1−β
−1(∆ + wβθ+1) = Lp

η
w

1
1−β

1 Lm
1

− γ
1−β

−1. (45)

Recall that

(γ + 1 − γ

1 − α
) log lm = α

1 − α
[log T

1
θ

1 − log T
1
θ

2 ] + [ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ)∆

+ (x̂ − 1
x̂

)∆
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where

x̂ =
(

T1

T2

) 1
θ

(1−β)(1+βθ+ α
1−α

)
> 1,

and

ŵ =
(

T1

T2

) 1
θ

1
γ+1− γ

1−α > 1

are solutions to x and w when ∆ = 0. Therefore,

(− γ

1 − β
− 1) log lm = −

γ
1−β

+ 1
γ + 1 − γ

1−α

α

1 − α
[log T

1
θ

1 − log T
1
θ

2 ] −
γ

1−β
+ 1

γ + 1 − γ
1−α

[ α

1 − α

1
θ

+ η

η + ζ
]

(ŵβθ − ŵ−βθ)∆ −
γ

1−β
+ 1

γ + 1 − γ
1−α

(x̂ − 1
x̂

)∆.

This implies that

l
− γ

1−β
−1

m = (T1

T2
)

−
γ

1−β
+1

γ+1− γ
1−α

α
1−α

1
θ

[
1 −

γ
1−β

+ 1
γ + 1 − γ

1−α

[ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ)∆ −

γ
1−β

+ 1
γ + 1 − γ

1−α

(x̂ − 1
x̂

)∆
]

.

As a result,

T
1

θ(1−β)
1 [1 + (ŵβθ( 1

θ(1 − β) − 1) + ŵβθ+1)∆] + T
1

θ(1−β)
2 ŵβθ( 1

θ(1−β) −1)ŵβθ+1(T1

T2
)

−
γ

1−β
+1

γ+1− γ
1−α

α
1−α

1
θ ×

(1 + ŵ−βθ∆ + ŵ−βθ−1∆ −
γ

1−β
+ 1

γ + 1 − γ
1−α

[ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ)∆ −

γ
1−β

+ 1
γ + 1 − γ

1−α

(x̂ − 1
x̂

)∆)

= Lp

η
w

1
1−β

1 Lm
1

− γ
1−β

−1. (46)

We can then obtain that

1
1 − β

log w1 − ( γ

1 − β
+ 1) log Lm

1 = constant + A

T
1

θ(1−β)
1 + T

1
θ(1−β)

2 w
1

1−β (T1
T2

)
−

γ
1−β

+1

γ+1− γ
1−α

α
1−α

1
θ

∆,
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where

A = T
1

θ(1−β)
1 (ŵβθ( 1

θ(1 − β) − 1) + ŵβθ+1) + T
1

θ(1−β)
2 ŵβθ( 1

θ(1−β) −1)ŵβθ+1(T1

T2
)

−
γ

1−β
+1

γ+1− γ
1−α

α
1−α

1
θ ×

[
ŵ−βθ + ŵ−βθ−1 −

γ
1−β

+ 1
γ + 1 − γ

1−α

[ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ) −

γ
1−β

+ 1
γ + 1 − γ

1−α

(x̂ − 1
x̂

)
]

.

(47)

Since the skill premium is

1
(1 − β)θ [log T1 + (1 + ∆ŵβθ)] − ( 1

1 − β
log w1 − γ

1 − β
log Lm

1 ),

we know that the sign of the skill premium is the same as the sign of

T
1

θ(1−β)
1 (ŵβθ − ŵβθ+1) + T

1
θ(1−β)

2 ŵβθ( 1
θ(1−β) −1)ŵβθ+1(T1

T2
)

−
γ

1−β
+1

γ+1− γ
1−α

α
1−α

1
θ × 1

(1 − β)θ ŵβθ−

T
1

θ(1−β)
2 ŵβθ( 1

θ(1−β) −1)ŵβθ+1(T1

T2
)

−
γ

1−β
+1

γ+1− γ
1−α

α
1−α

1
θ ×[

ŵ−βθ + ŵ−βθ−1 −
γ

1−β
+ 1

γ + 1 − γ
1−α

[ α

1 − α

1
θ

+ η

η + ζ
](ŵβθ − ŵ−βθ) −

γ
1−β

+ 1
γ + 1 − γ

1−α

(x̂ − 1
x̂

)
]

.

(48)

The sign can be positive or negative.

Managers’ welfare is

γ

1 − β
log Lm

1 + 1
θ(1 − β) log Φ1 − (1 − α) log p1. (49)

Since housing price is given by

log p1 = log(1 − α) + log W1 − log H1, (50)

where
W1 = w1L

p
1 + ζLm

1
γ

1−β Φ
1

θ(1−β)
1 Lm

1 , (51)
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managers’ welfare is rewritten as

γ

1 − β
log Lm

1 + 1
θ(1 − β) log Φ1 − (1 − α) log w1 − log(L1

p + ζLm
1

γ
1−β Φ

1
θ(1−β)
1 Lm

1 /w1)

= skill_premium + α log w1 − log(L1
p + ζLm

1
γ

1−β Φ
1

θ(1−β)
1 Lm

1 /w1). (52)

Similarly, we can substitute expressions for the skill premium, log w1, Lm
1 , and Lp

1 derived
above, to get ∂ managers’ welfare

∂∆ evaluated at ∆ = 0. Finally, production workers’ welfare is
equal to managers’ welfare minus the skill premium.

C Equilibrium Characterization

In this section, we show, using Banach fixed point theorem, a set of sufficient conditions
under which the equilibrium exists and is unique. For simplicity of exposition, we denote
∆nc = τ−θ

nc . For the derivation of analytic results, we follow the conventional literature
and adopt the following parametric assumption for the city-level agglomeration forces for
managers (see, e.g., Allen and Arkolakis, 2014):

f(L) = Lγ, where γ > 0.

Combining this assumption and the equilibrium housing prices in (11), we can rewrite the
indifference conditions for workers and managers in (15) and (16) as

γ

1 − β
log Lm

n

Lm
c

+ 1
θ(1 − β) log Φn

Φc

= (1 − α) log pn

pc

= log wn

wc

(53)

and

(
wn

wc

) 1
1−α

=
ζ(Lm γθ

n Φn)
1

θ(1−β) Lm
n +∑

k η
(
Tk(τknwβ

n)−θ
)

Φ
1

θ(1−β) −1
k [Lm

k ]
γ

1−β
+1

ζ(Lm γθ
c Φc)

1
θ(1−β) Lm

c +∑
k η
(
Tk(τkcw

β
c )−θ

)
Φ

1
θ(1−β) −1
k [Lm

k ]
γ

1−β
+1

Hc

Hn

. (54)

We can then solve for wn

wc
and Lm

n

Lm
c

from the above two equations. In a special case with no
agglomeration force γ = 0, we can first solve worker’s wage wn from equation (53) and then
the number of managers Lm

n from equation (54).
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The relative number of production workers in city n and city c is given by

Lp
n

Lp
c

=
∑

k ηw−1
n

(
Tk(τknwβ

n)−θ
)

Φ
1

θ(1−β) −1
k [Lm

k ]
γ

1−β
+1

∑
k ηw−1

c

(
Tk(τkcw

β
c )−θ

)
Φ

1
θ(1−β) −1
k [Lm

k ]
γ

1−β
+1

. (55)

Finally, the skill premium, defined as the log difference between the manager’s and pro-
duction worker’s expected income, is given by:

log E[πn] − log wn = γ

1 − β
log Lm

n + 1
(1 − β)θ log Φn − log wn. (56)

Proposition 5 (Existence and Uniqueness) If there exists an aux ∈ R such that

ρ = | −βθ + aux

1/(1 − α) + aux
| + |

1−β
γ

+ 1
1/(1 − α) + aux

| + |(1 + 1
θγ

)( −βθ

1/(1 − α) + aux
)| < 1,

then the spatial equilibrium exists and is unique.

Proof. We obtain the following equation from the definition of Φn in (8):


∆11T1 ∆12T1 ∆13T1 . . . ∆1NT1

∆21T2 ∆22T2 ∆23T2 . . . ∆2NT2
... ... ... . . . ...

∆N1TN ∆N2TN ∆N3T2 . . . ∆NNTN




w−βθ

1

w−βθ
2
...

w−βθ
N

 =


Φ1

Φ2
...

ΦN

 . (57)

From equation (53), we get

L
m γ

1−β
n ∝ wnΦ

− 1
θ(1−β)

n . (58)

Therefore, up to a constant, and using results from equation (54), we can rewrite the
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matrix as
ζΦ

1
θ(1−β)
1 + ηT1∆11w−βθ

1 Φ
1

θ(1−β) −1
1 ηT2∆21w−βθ

1 Φ
1

θ(1−β) −1
2 . . . ηTN ∆N1w−βθ

1 Φ
1

θ(1−β) −1
N

ηT1∆12w−βθ
2 Φ

1
θ(1−β) −1
1 ζΦ

1
θ(1−β)
2 + ηT2∆22w−βθ

2 Φ
1

θ(1−β) −1
2 . . . ηTN ∆N2w−βθ

2 Φ
1

θ(1−β) −1
N

...
...

. . .
...

ηT1∆1N w−βθ
N Φ

1
θ(1−β) −1
1 ηT2∆2N w−βθ

N Φ
1

θ(1−β) −1
2 . . . ζΦ

1
θ(1−β)
N + ηTN ∆NN w−βθ

N Φ
1

θ(1−β) −1
N



×


w

1−β
γ

+1
1 Φ

− 1
θ(1−β) − 1

θγ

1

w
1−β

γ
+1

2 Φ
− 1

θ(1−β) − 1
θγ

2
...

w
1−β

γ
+1

N Φ
− 1

θ(1−β) − 1
θγ

N

 =


w

1
1−α

1 H1

w
1

1−α

2 H2
...

w
1

1−α

N HN

 . (59)

Multiply both sides by waux
n , where aux ∈ R is an auxiliary parameter, and we get


ζΦ

1
θ(1−β)
1 waux

1 + ηT1∆11w−βθ
1 Φ

1
θ(1−β) −1
1 waux

1 . . . ηTN ∆N1w−βθ
1 Φ

1
θ(1−β) −1
N waux

1

ηT1∆12w−βθ
2 Φ

1
θ(1−β) −1
1 waux

2 . . . ηTN ∆N2w−βθ
2 Φ

1
θ(1−β) −1
N waux

2
...

. . .
...

ηT1∆1N w−βθ
N Φ

1
θ(1−β) −1
1 waux

N . . . ζΦ
1

θ(1−β)
N waux

N + ηTN ∆NN w−βθ
N Φ

1
θ(1−β) −1
N waux

N



×


w

1−β
γ

+1
1 Φ

− 1
θ(1−β) − 1

θγ

1

w
1−β

γ
+1

2 Φ
− 1

θ(1−β) − 1
θγ

2
...

w
1−β

γ
+1

N Φ
− 1

θ(1−β) − 1
θγ

N

 =


w

1
1−α

+aux

1 H1

w
1

1−α
+aux

2 H2
...

w
1

1−α
+aux

N HN

 . (60)

Denote xn =
(

1
1−α

+ aux
)

log wn and x = (x1, x2, ...xN)′. Then

Fi(x) = log[
∑

j

1
Hi

η exp(xi)
−βθ+aux

1/(1−α)+aux Tj∆ji exp(xj)
1−β

γ +1
1/(1−α)+aux

(
Φa

j

)−1− 1
θγ

+ ζ
1

Hi

exp(xi)
1−β

γ +1+aux

1/(1−α)+aux (Φa
i )− 1

θγ ],

where
Φa

j = Tj

∑
k

∆jk exp(xk)
−βθ

1/(1−α)+aux .
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Finally, we can show that

d(F (x), F (y)) = max
i

|Fi(x) − Fi(y)|

= max
i

log[
∑

j

λjexp(xi − yi)
−βθ+aux

1/(1−α)+aux exp(xj − yj)
1−β

γ +1
1/(1−α)+aux

×

Tj
∑

k ∆jk exp(xk)
−βθ

1/(1−α)+aux

Tj
∑

k ∆jk exp(yk)
−βθ

1/(1−α)+aux

−1− 1
θγ

+ λN+1exp(xi − yi)
1−β

γ +1+aux

1/(1−α)+aux ×

Tj
∑

k ∆jk exp(xk)
−βθ

1/(1−α)+aux

Tj
∑

k ∆jk exp(yk)
−βθ

1/(1−α)+aux

− 1
θγ

]

where ∑j λj + λN+1 = 1, λj ≥ 0, λN+1 ≥ 0. Note that

Tj
∑

k ∆jk exp(xk)
−βθ

1/(1−α)+aux

Tj
∑

k ∆jk exp(yk)
−βθ

1/(1−α)+aux

≤
∑

k

ωkexp(xk − yk)
−βθ

1/(1−α)+aux

where ∑
k

ωk = 1, ωk ≥ 0.

Therefore, we get that

d(F (x), F (y)) ≤ ρ · maxk|xk − yk| = ρ · d(x, y),

where

ρ = | −βθ + aux

1/(1 − α) + aux
| + |

1−β
γ

+ 1
1/(1 − α) + aux

| + |(1 + 1
θγ

)( −βθ

1/(1 − α) + aux
)|.

If there exists a real number aux such that ρ < 1, using Banach fixed-point theorem, the
equilibrium exists and is unique.

D Demand for Production Workers

We derive the labor demand for production workers given by equation (19).

Denote Xnc = ānc

τncwβ
c
. Then from Proposition 1, we get

Gnc(x) = Pr(Xnc ≤ x) = Pr(Anc ≤ τncw
β
c x) = e−Tn(τncwβ

c )−θx−θ

.
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The joint distribution whereby a manager from city n locates her production team in city c

and that ānc

τncwβ
c

= x is

Pr(argmaxk
ānk

τnkwβ
k

= c ∩ ānc

τncw
β
c

= x) = θTn(τncw
β
c )−θx−θ−1e−Φnx−θ

.

Given lnc = β
1

1−β w−1
c [f(Lm

n )]
1

1−β

[
ānc

τncwβ
c

] 1
1−β

, we have

Lp
nc = β

1
1−β

(
Tn(τncw

β
c )−θ

)
w−1

c [f(Lm
n )]

1
1−β Lm

n

[∫ ∞

0

(
θx−θ−1e−Φnx−θ

)
x

1
1−β dx

]
,

= ηw−1
c

(
Tn(τncw

β
c )−θ

)
Φ

1
θ(1−β) −1
n

[
[f(Lm

n )]
1

1−β Lm
n

]

where η = β
1

1−β
∫∞

0 y− 1
θ(1−β) e−ydy.

E Heterogeneity Analysis across Industries

We provide further evidence in this section to link the observed increase in spatial segregation
with our proposed mechanism of increasing production fragmentation across U.S. cities. In
particular, we show that this pattern of segregation across space at the industry level is closely
related to production fragmentation activities in the U.S. economy. Fort (2017) documents
that firms’ adoption of communications technology facilitates their sourcing, particularly
from domestic suppliers. If the observed segregation is linked to greater sourcing of tasks,
one would expect that industries experiencing more sourcing would also undergo greater skill
segregation. Figure 9 confirms this hypothesis by illustrating the relationship between the
change in the KM index and the fraction of plants that engage in sourcing activities. These
are measured by the purchases of contract manufacturing services (CMS) from other plants
(within its own company or from another company) in each of the 86 four-digit NAICS
manufacturing industries.26 For example, the computers and related equipment industry,
which has a very high sourcing index (50% of plants source from another plant), features a
relatively large increase in the KM index; in contrast, the bakery product industry has a very

26Fort (2017) provides this measure at the four-digit NAICS level. We employ the industry code crosswalk
between census industries and NAICS industries provided by the Census Bureau, so that each census industry
is assigned to the corresponding NAICS code. If one Census industry corresponds to multiple NAICS codes,
we calculate the simple average of the fragmentation indices among those NAICS codes as that census
industry’s fragmentation index. We are left with 67 census industries. See Table 13 in the Appendix for a
detailed list of industries and their change in KM index and Fort (2017) index.
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low sourcing index (8% of plants source from another plant) exhibits a slight decrease in the
KM index.

0
.5

1
1
.5

2

0 .2 .4 .6
Fort (2017) Firm Sourcing Index

95% CI Fitted values

Change in KM Segregation Index

Figure 9: Change in KM Skill Segregation Index and Fragmentation Index Across Sectors

Notes: Each point denotes an industry. The shaded area displays the 95% confidence band around the
point estimates for the slope. The correlation between change in KM skill segregation index and Fort
(2017) sourcing index is 0.47.

In summary, we show that ihe extent of segregation varies across industries systematically,
matching the cross-industry heterogeneity in the extent of production fragmentation.

F Internet Quality and Bilateral Goods Trade

We draw data from the Commodity Flow Survey (CFS) 2012, which is publicly accessible.
The survey records the value of shipments from region i to region j, where each region is
defined as a combined statistical area (CSA) in the U.S.. Supplementing these data with the
geographic information and internet quality data, we run the following regression:

log(shipmentij) = β0 + β1log(distanceij) + β2qi ∗ qj + Xij + ϵij, (61)

where the dependent variable is the logarithm of the total value of the shipment from CSA i

to CSA j, distanceij is the great circle distance, and qi is internet quality at the CSA i. We
perform the regression with and without location fixed effects.
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Table 9 reports the results. In Column (1), we don’t include origin and destination fixed
effects, but include internet quality in i and j as additional explanatory variables. We
find that while bilateral distance significantly reduces trade, the impact of the internet on
bilateral goods trade is not statistically significant. In Column (2), we include both origin
and destination fixed effects. Similarly, the point estimate for bilateral internet connection
term qi ∗ qj is even smaller and is still statistically insignificant.

Dependent variable log(shipment) log(shipment)
(1) (2)

log (distance) -1.236*** -1.239***
(.0026) ( .027)

qi ∗ qj .058 .039
(.094) (.053)

qi .489
( .349)

qj .379
(.356)

CSA Fixed Effects No Yes
N 4,801 4,801

Table 9: Gravity Equation Estimates for Trade in Goods
Notes: Robust standard errors in parentheses. Significance levels: * 10%, ** 5%, ***1%.
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G Solution Algorithm for the Spatial Equilibrium

For a system of N ≥ 1 cities, given a set of bilateral fragmentation cost τnc (or ∆nc = τ−θ
nc ),

technology Tn, housing supply Hn, and aggregate labor supply Lp and Lm, we use the fol-
lowing iteration methods (global methods) to solve the spatial equilibrium:
(1) Pick up an initial set of production worker’s (relative) wage wr(0) (a vector of N − 1
dimensions), where wr(j) = w(j)(1 : N −1)/w(j)(N). For example, all N −1 elements of wr(0)

are set to 1.
(2) Pick up a real number aux. If the code doesn’t converge, pick up another aux and retry
the steps that follow. Start from j = 0.
(3) From equation (8), which defines Φn, we calculate relative Φr (a vector of N − 1 dimen-
sions), where Φr(j) = Φ(j)(1 : N − 1)/Φ(j)(N).
(4) Substitute vectors wr(j), Φr(j) into the left-hand side of equation (60) to update vector
w on the right-hand side. The updated relative wage is written as wr(j+1).
(5) Check convergence, if maxk=1,2,...,N−1 |wr(j)(k) − wr(j+1)(k)| ≤ ϵ, where, for example,
ϵ = 10−6. Then stop. Otherwise, go back to step (3) and continue.
(6) From equation (53), which gives managers’ spatial distribution, we get the relative num-
ber of managers Lrm (a vector of N − 1 dimensions), where Lrm = Lm(1 : N − 1)/Lm(N).
(7) With the total supply of managers Lm and relative number of managers Lrm, we obtain
the equilibrium spatial distribution of managers. Equation (55) gives the relative number of
production workers. With the total supply of production workers Lp, we get the equilibrium
spatial distribution of production workers.
(8) The level of worker wage w is solved using the market-clearing condition for production
workers; see equations (18) and (19).
(9) With the expected income of managers living in city n (see equation (13)), worker wage,
number of managers, and number of production workers, we can add up the total income
Wn in a city. Combined with information on housing supply Hn, we get housing price
pn = (1 − α)Wn/Hn.
(10) Worker utility and managers’ expected utility are derived as wn/p1−α

n and E[πn]/p1−α
n .

H Sensitivity Analysis γ

Recall that γ in our model is calibrated to match the (average) worker wage elasticity with
respect to city size. In our equilibrium analysis in Proposition 4, we argue that larger γ will
imply more skill redistribution to larger cities (cities with greater technology parameter Tn),
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given the same magnitude of communication cost reduction. We next evaluate how our key
quantitative results are sensitive to other values of γ.

In the baseline analysis, we set γ = 0.010. We change its value to γ = 0.005 and 0.015
to conduct the sensitivity analysis.27 We report the quantitative results in Table 10, includ-
ing the slope of regressing the change in the high-skill share on city size and welfare (real
consumption) change for both managers and production workers.

It turns out that changing γ has very little impact on the results. The slope of regressing
the change in the high-skill share on city size actually becomes slightly smaller when γ

increases, if anything. This is precisely because of the re-calibration of Tn.28 Equation (36)
tells us that

1
θ(1 − β) log Tn

Tc

= log wn

wc

− 1
θ(1 − β) log

∑
k(τnkwβ

k )−θ∑
k(τckwβ

c )−θ
− γ

1 − β
log Lm

n

Lm
c

. (62)

Without loss of generality, consider a big city n, which usually has a relatively larger worker
wage wn and more supply of high-skilled Lm

n . A larger γ will reduce the value of the calibrated
Tn (Tn/Tc). This means that big cities’ comparative advantage is weakened. Therefore, the
impact of a reduction in communication cost will be smaller. The two forces – a larger γ and
a smaller Tn for big cities – will offset each other to some extent. As a result, changing γ

has very little impact on how communication cost reduction affects the skill redistribution.
Similarly, the welfare increases (change in log real consumption) for both managers and
production workers change little with the value of γ.

γ slope of skilled share change ∆ workers’ welfare ∆ managers’ welfare
w.r.t. city size

0.005 0.0030 3.62% 3.39%
0.010 (benchmark) 0.0031 3.62% 3.39%
0.015 0.0032 3.62% 3.39%

Table 10: Sensitivity of Changing the Strength of Agglomeration γ

Notes: This table shows how different values of the strength of agglomeration γ impacts our
quantitative results. ∆ workers’ welfare and ∆ managers’ welfare are changes in log real
consumption.

27When we change the value of γ, we also need to redo the calibration of technology parameter Tn derived
from equation (36), since it will be affected by the value of γ.

28Table 11 in the Appendix reports quantitative results without recalibrating Tn as a thought experiment.
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I Sensitivity Analysis δI

In our baseline exercise, we directly take the estimate of δI , the elasticity of fragmentation
cost with respect to bilateral internet quality, from a gravity equation test. We emphasize
the role of internet in shaping bilateral fragmentation cost by varying the value of δI in this
section.

The baseline exercise gives the value δI = −0.010. We try other two values, -0.005 and
-0.015, which are half and double the baseline value. The results on skill relocation and
welfare are summarized in Table 11.

Changing how the internet shapes fragmentation cost δI drastically reshapes skill reloca-
tion and welfare change. When δI = −0.005, the change in the elasticity of the high-skilled
share with respect to city size drops to 0.0018 from 0.0030 in the baseline, which is a 40%
drop. Similar magnitudes of drops occur in both production workers’ and managers’ real
consumption levels. When δI = −0.015, the opposite happens. The elasticity of the high-
skill share with respect to city size increases to 0.0037 from 0.0030, which is around a 23%
increase. The welfare changes are even larger for both production workers and managers are
of the similar scales of increase.

δI slope of skilled share change ∆ workers’ welfare ∆ managers’ welfare
w.r.t. city size

-0.005 0.0018 2.03% 1.89%
-0.010 (benchmark) 0.0031 3.62% 3.39%
-0.015 0.0037 4.60% 4.31%

Table 11: Sensitivity of Changing the Elasticity of Fragmentation Cost w.r.t. Internet Quality
δI

Notes: This table shows how different values of the elasticity of fragmentation cost with
respect to internet quality δI impacts our quantitative results. ∆ workers’ welfare and ∆
managers’ welfare are changes in log real consumption.
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J Derivation of Production Function Snc

We have the following conditional probability derived in Appendix D

Pr( ānc

τncw
β
c

= x|argmaxk
ānk

τncw
β
c

= c) =
Pr( ānc

τncwβ
c

= x, argmaxk
ānk

τncwβ
c

= c)
Pr(argmaxk

ānk

τncwβ
c

= c) = θx−θ−1e−Φnx−θΦn.

(63)
Then

Pr(ānc = ā|argmaxk
ānk

τncw
β
c

= c) =θ

(
ā

τncw
β
c

)−θ−1

e
−Φn

(
ā

τncw
β
c

)−θ

Φn
1

τncw
β
c

= θā−θ−1e−Φnτθ
ncwβθ

c ā−θΦnτ θ
ncw

βθ
c . (64)

Therefore,

Pr(ānc ≤ ā|argmaxk
ānk

τncw
β
c

= c) = e−Φnτθ
ncwβθ

c ā−θ

. (65)

Denote ι(ā) = Pr(ānc = ā|argmaxk
ānk

τncwβ
c

= c).

Suppose that there are Lm
nc managers and Lp

nc workers that form production teams between
city n and city c, with n the origin city. For a team with managers productivity ā, her
objective function is

max
l

f(Lm
n ) ā

τnc

lβ − wcl.

We get that

l(ā) =
(

βf(Lm
n )ā

τncwc

) 1
1−β

= κncā
1

1−β ,

where κnc = β
1

1−β (Lm
n )

γ
1−β (τncwc)− 1

1−β . The market clearing condition for low-skill workers is

Lm
nc

∫ ∞

0
ι(ā)l(ā)dā = Lp

nc.

That is
κncθΦnτ θ

ncw
βθ
c

∫ ∞

0
e−Φnτθ

ncwβθ
c ā−θ

ā−θ−1+ 1
1−β dā = Lp

nc

Lm
nc

.

Or
κncθ

∫ ∞

0
e−y−θ

y−θ−1+ 1
1−β dy = Lp

nc

Lm
nc

(Φnτ θ
ncw

βθ
c )− 1

θ(1−β) .
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The total output is given by (up to a constant)

(Lm
n )γ

τnc

(Φnτ θ
ncw

βθ
c ) 1

θ (Lp
nc)β(Lm

nc)(1−β).

We denote Snc(x, y) = (Lm
n )γ(Φnτ θ

ncw
βθ
c ) 1

θ xβy1−β, where (Lm
n )γ(Φnτ θ

ncw
βθ
c ) 1

θ is evaluated in
the scenario without the internet.

K Equilibrium with Elastic Housing Supply

In the baseline model, we assume that housing supply is fixed. We relax this assumption and
adopt the following form of elastic housing supply in each city n

Hn = H̄npϵ
n, (66)

where H̄n is a constant and ϵ is the supply elasticity. Then the equilibrium housing rent in
city n will be revised to

pn =
[

(1 − α)Wn

H̄n

] 1
ϵ+1

. (67)

The relative housing price between any two cities is given by (revised from (54))

(
wn

wc

) 1
1−α

=

(
(1 − α)(ζ(Lm γθ

n Φn)
1

θ(1−β) Lm
n +∑

k η
(
Tk(τknwβ

n)−θ
)

Φ
1

θ(1−β) −1
k [Lm

k ]
γ

1−β
+1)/H̄n

) 1
ϵ+1

(
(1 − α)(ζ(Lm γθ

c Φc)
1

θ(1−β) Lm
c +∑

k η
(
Tk(τkcw

β
c )−θ

)
Φ

1
θ(1−β) −1
k [Lm

k ]
γ

1−β
+1)/H̄c

) 1
ϵ+1

.

(68)

γ

1 − β
log Lm

n

Lm
c

+ 1
θ(1 − β) log Φn

Φc

= (1 − α) log pn

pc

= log wn

wc

(69)
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If ϵn = ϵc = ϵ, then


ζΦ
1

θ(1−β)
1 + ηT1∆11w−βθ

1 Φ
1

θ(1−β) −1
1 ηT2∆21w−βθ

1 Φ
1
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2 . . . ηTN ∆N1w−βθ

1 Φ
1

θ(1−β) −1
N

ηT1∆12w−βθ
2 Φ

1
θ(1−β) −1
1 ζΦ

1
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2 Φ
1
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...
...

. . .
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1
θ(1−β)
N + ηTN ∆NN w−βθ

N Φ
1

θ(1−β) −1
N



×


w

1−β
γ

+1
1 Φ

− 1
θ(1−β) − 1

θγ

1

w
1−β

γ
+1

2 Φ
− 1

θ(1−β) − 1
θγ

2
...

w
1−β

γ
+1

N Φ
− 1

θ(1−β) − 1
θγ

N

 =


w

1
1−α

(1+ϵ)
1 H1
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1−α
(1+ϵ)

2 H2
...

w
1

1−α
(1+ϵ)

N HN

 . (70)

Multiply both sides by waux
n , where aux ∈ R is an auxiliary parameter, and we get


ζΦ

1
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1 waux
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N
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1 H1

w
1
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(1+ϵ)+aux

2 H2
...

w
1

1−α
(1+ϵ)+aux

N HN

 . (71)

We now have two additional parameters to calibrate. For the housing supply elasticity ϵ,
we follow Giannone (2022) and set ϵ = 0.135. We additionally obtain the housing parameter
H̄n by:

H̄n

H̄ ′
n

= Wn/w
1

1−α
(1+ϵ)

n

W ′
n/w

′ 1
1−α

(1+ϵ)
n

We find that with elastic housing supply, the role of internet quality improvement in
increasing welfare and skill redistribution is even bigger quantitatively. The welfare increase
for managers becomes 3.89% and 3.67% for workers, respectively. Moreover, Table 12 shows
that removing Internet imply a reduction of 0.0037 in the elasticity of high-skill employment
share with respect to city size. This number is bigger than the baseline counterpart with
inelastic housing supply. The intuition is straightforward: Elastic housing supply makes it
easier for the labor market to adjust across regions.
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Dependent variable: Change in high-skill employment share
with internet

(1) (2)
City Size 0.0039∗∗∗ 0.0037∗∗∗

(0.0008) (0.0011)
State fixed effects No Yes
Observations 722 722
R2 0.049 0.075
∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

Table 12: High-skill Employment Share and City Size with Elastic Housing Supply

Notes: The dependent variable is the change in high-skill employment share after a more uniform internet
quality improvement program. City size is measured by log(labor supply in 1980). Column (1) reports
results using robust standard errors, and Column (2) with standard errors clustered by state.

L Amenity Spillover

We extend the baseline model to consider amenity spillovers. The extension is in the spirit
of Diamond (2016). The utility function is revised to

cαh1−αAζs

where s = p, m. The amenity supply is

log An = θa(log Lm
n − log Lp

n).

The indifference conditions will then be changed to

log wn − (1 − α) log pn + ζp log An = log wc − (1 − α) log pc + ζp log Ac (72)

and

γ

1 − β
log Lm

n + 1
θ(1 − β) log Φn − (1 − α) log pn + ζm log An

= γ

1 − β
log Lm

c + 1
θ(1 − β) log Φc − (1 − α) log pc + ζm log Ac. (73)
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That is

log wn − (1 − α) log pn + ζpθa(log Lm
n − log Lp

n) = log wc − (1 − α) log pc + ζpθa(log Lm
c − log Lp

c)
(74)

and

γ

1 − β
log Lm

n + 1
θ(1 − β) log Φn − (1 − α) log pn + ζmθa(log Lm

n − log Lp
n)

= γ

1 − β
log Lm

c + 1
θ(1 − β) log Φc − (1 − α) log pc + ζmθa(log Lm

c − log Lp
c). (75)

Combining the above two to get

γ
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log Lm

n + 1
θ(1 − β) log Φn − log wn + (ζmθ − ζpθ)(log Lm

n − log Lp
n)

= γ

1 − β
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c). (76)

This implies that

L
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On the other hand,
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Then we express the above in matrix form as
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. (77)

We make the following simplifications to illustrate how amenity spillover can shape the
skill redistribution. Let ζp = 0 and we introduce one more parameter θaζm > 0 so that the
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endogenous amenities benefit the high-skilled more as in Diamond (2016). To investigate
the role of amenity spillover, we set θaζm = 0.002 and keep γ = 0.010 to re-compute how
Internet connectivity changes the skill redistribution.29 We find that the change in the
elasticity of high-skill employment share becomes even higher (=0.0039) after Internet in
2013 is introduced. This result is intuitive since the endogenous amenities is assumed to
benefit the high-skilled more thus promotes them to concentrate more in big cities.

M Fragmentation Sensitivity by Sectors

In the baseline model, there is only one production sector. We now do an extension to
consider two sectors with differential fragmentation sensitivities. Suppose that sector 1 is
fragmentation sensitive so that Internet quality improvement leads to lower iceberg cost in
fragmentation. But in sector 2, the fragmentation cost cannot be reduced with the Internet
and is set to be infinite so that inter-city joint production is not possible. We list the new
equilibrium conditions below. Note that sector 1 communication cost between city n and c

τnc,1 is sensitive to the communication technology.

We add subscript s = 1, 2 to denote variables in different sectors. The labor market
clearing conditions are given by

Lm =
∑

n

Lm
n,s =

∑
n,c

Lm
nc,s, (78)

and
Lp =

∑
n

Lp
n,s =

∑
n,c

Lp
nc,s (79)

for managers and production workers, respectively. The demand for production workers is
given by

Lp
nc,s = ηw−1

c

(
Tn,s(τnc,s/pswβ

c )−θ
)

Φ
1

θ(1−β) −1
n,s [f(Lm

n,s)]
1

1−β Lm
n,s. (80)

We assume that the agglomeration force are at the origin city-sector level such that

Φn,s =
∑

k

Tn,s(τnk,s/pswβ
k )−θ.

29We keep elastic housing supply such that ϵ = 0.135.
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The final consumption bundle is assumed to be a Cobb-Douglas form

c = c
1
2
1 c

1
2
2 .

Normalizing the consumption bundle for tradables as 1

(2p1)1/2(2p2)1/2 = 1.

The indifference conditions of managers and workers across different locations are

log wn − (1 − α) log pn = log wc − (1 − α) log pc.

γ

1 − β
log Lm

n,s + 1
θ(1 − β) log Φn,s − log wn = γ

1 − β
log Lm

c,s + 1
θ(1 − β) log Φc,s − log wc

(81)

Moreover, managers in the same city are indifferent in the sector they work

γ

1 − β
log Lm

n,s + 1
θ(1 − β) log Φn,s = γ

1 − β
log Lm

n,s′ + 1
θ(1 − β) log Φn,s′ .

The housing market clearing condition is

pn = (1 − α)Wn

Hn

where Wn is the total income in city n

Wn =
∑

s

ζ(Lmγθ
n,s Φn,s)

1
θ(1−β) Lm

n,s +
∑
k,s

η(Tk,s(τkn,s/pswβ
n)−θ)Φ

1
θ(1−β) −1
k,s [Lm

k,s]
γ

1−β
+1.

Goods market clearing conditions by sector are

1
2
∑

n

Wn =
∑
n,c

wcL
p
nc,s/β

i.e.,
1
2
∑

n

Wn =
∑
n,c

η(Tn,s(τnc,s/pswβ
c )−θ)Φ

1
θ(1−β) −1
n,s [Lm

n,s]
γ

1−β
+1/β
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Therefore, for any two cities n and c, we get

(
wn

wc

) 1
1−α

=
∑

s ζ(Lmγθ
n,s Φn,s)

1
θ(1−β) Lm

n,s +∑
k,s η(Tk,s(τkn,s/pswβ

n)−θ)Φ
1

θ(1−β) −1
k,s [Lm

k,s]
γ

1−β
+1

∑
s ζ(Lmγθ

c,s Φc,s)
1

θ(1−β) Lm
c,s +∑

k,s η(Tk,s(τkc,s/pswβ
c )−θ)Φ

1
θ(1−β) −1
k,s [Lm

k,s]
γ

1−β
+1

Hc

Hn

.

(82)

and

γ

1 − β
log Lm

n,s + 1
θ(1 − β) log Φn,s − log wn = γ

1 − β
log Lm

c,s + 1
θ(1 − β) log Φc,s − log wc,

(83)

where s = 1, 2.

Finally, the output produced by managers in city n and workers in city c of sector s is

Lm
ncs[Lm

n,s]γ
ps

τnc

∗ κβ
ncs ∗ θ ∗

∫ ∞

0
e−y−θ

y−θ−1+ 1
1−β dy ∗ Φ

− 1
θ(1−β)

ns [τ−θ
ncs]

1
(1−β)θ w

β
1−β
c

where κncs = β
1

1−β [Lm
n,s]

γ
1−β [ τncswc

ps ]−
1

1−β .

We solve a two-city two-sector case numerically and show the spatial dispersion of high-
skill employment shares for the two sectors, respectively in Figure 10. We can find that
when there is Internet quality increases (ICT openness increases for sector 1), the high-skill
employment shares of sector 1 diverge in the two cities as reflected in the standard deviations.
But this is not the case for sector 2, which does not have a tendency to fragment even with
ICT improvement.
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Figure 10: Two-city Two-Sector Equilibrium: Spatial Dispersion of High-skill Employment
Share in Two Sectors

Notes: In this simulation, we set θ = 5, city 1 technology T
1
θ

1 = 1.5 for both sectors, city 2 technology
T

1
θ

2 = 1.0 for both sectors, Lm = 1, Lp = 2, γ = 0.1, α = 0.4, β = 0.4, H1 = H2 = 1.0. Sector 1 is
fragmentation sensitive while sector 2 is not. The horizontal axis shows the extent of ICT openness △ ≡ τ−θ

in sector 1.
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N Additional Figures and Tables
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Figure 11: log(population in 2013) against log(population in 1980) across CZs

Notes: Each dot represents a commuting zone. The linear correlation between log(labor supply in 2013)
and log(labor supply in 1980) is 0.99.
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Code Industry Description Fort Index ∆ KM Index
100 Meat products 0.111 -0.013
101 Dairy products 0.142 0.048
102 Canned, frozen, and preserved fruits and vegetables 0.194 0.097
110 Grain mill products 0.171 0.156
111 Bakery products 0.082 -0.020
112 Sugar and confectionery products 0.140 0.046
120 Beverage industries 0.189 0.342
121 Misc. food preparations and kindred products 0.198 0.087
130 Tobacco manufactures 0.267 0.326
132 Knitting mills 0.292 0.086
140 Dyeing and finishing textiles, except wool and knit goods 0.269 0.246
141 Carpets and rugs 0.253 -0.019
142 Yarn, thread, and fabric mills 0.274 0.221
150 Miscellaneous textile mill products 0.212 N/A
151 Apparel and accessories, except knit 0.272 0.098
152 Miscellaneous fabricated textile products 0.228 0.125
160 Pulp, paper, and paperboard mills 0.239 0.146
161 Miscellaneous paper and pulp products 0.362 0.148
162 Paperboard containers and boxes 0.362 0.042
172 Printing, publishing, and allied industries, except newspapers 0.322 0.108
180 Plastics, synthetics, and resins 0.263 0.030
181 Drugs 0.324 1.070
182 Soaps and cosmetics 0.325 0.328
190 Paints, varnishes, and related products 0.223 0.321
191 Agricultural chemicals 0.126 0.291
192 Industrial and miscellaneous chemicals 0.196 0.373
200 Petroleum refining 0.155 0.110
201 Miscellaneous petroleum and coal products 0.155 0.453
210 Tires and inner tubes 0.257 0.122
211 Other rubber products, and plastics footwear and belting 0.257 0.123
212 Miscellaneous plastics products 0.231 0.089
222 Leather products, except footwear 0.276 0.181
231 Sawmills, planing mills, and millwork 0.117 0.120
232 Wood buildings and mobile homes 0.224 0.146
241 Miscellaneous wood products 0.239 N/A
242 Furniture and fixtures 0.650 0.097

Table 13: Change in KM Segregation Index and Fort (2017) Fragmentation Index
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Code Industry Description Fort Index ∆ KM Index
250 Glass and glass products 0.238 0.156
251 Cement, concrete, gypsum, and plaster products 0.118 0.098
252 Structural clay products 0.192 0.195
261 Pottery and related products 0.192 0.191
262 Misc. nonmetallic mineral and stone products 0.137 0.097
270 Blast furnaces, steelworks, rolling and finishing mills 0.332 0.120
271 Iron and steel foundries 0.362 0.075
272 Primary aluminum industries 0.270 0.063
280 Other primary metal industries 0.272 0.096
281 Cutlery, handtools, and general hardware 0.378 0.244
282 Fabricated structural metal products 0.302 0.072
290 Screw machine products 0.352 N/A
291 Metal forgings and stampings 0.404 0.119
300 Miscellaneous fabricated metal products 0.318 0.164
310 Engines and turbines 0.501 0.450
311 Farm machinery and equipment 0.414 0.237
312 Construction and material handling machines 0.414 0.301
320 Metalworking machinery 0.409 0.233
321 Office and accounting machines 0.400 N/A
322 Computers and related equipment 0.501 1.833
331 Machinery, except electrical, n.e.c. 0.375 0.218
340 Household appliances 0.374 0.215
341 Radio, TV, and communication equipment 0.489 1.192
342 Electrical machinery, equipment, and supplies, n.e.c. 0.372 0.687
351 Motor vehicles and motor vehicle equipment 0.418 0.196
352 Aircraft and parts 0.500 0.494
360 Ship and boat building and repairing 0.228 0.163
361 Railroad locomotives and equipment 0.304 0.174
362 Guided missiles, space vehicles, and parts 0.500 0.845
370 Cycles and miscellaneous transportation equipment 0.466 0.337
371 Scientific and controlling instruments 0.467 0.793
372 Medical, dental, and optical instruments and supplies 0.278 0.440
381 Watches, clocks, and clockwork operated devices 0.467 N/A
390 Toys, amusement, and sporting goods 0.300 0.369
391 Miscellaneous manufacturing industries 0.300 0.194
610 Retail bakeries 0.082 0.088

Table 13 (continued). Change in KM Segregation Index and Fort (2017) Fragmentation Index

Notes: This table displays the change in the Kremer-Maskin (KM) skill segregation index
between 1980 and 2013 and the Fort (2017) fragmentation index in each industry (based on
1990 Census industry classification). We use industry concordance between census industry
classification and NAICS 4-digit available from the U.S. Census. When a Census industry
corresponds to multiple NAICS industries, we calculate the simple average of fragmentation
indices of the several NAICS industries.
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Dependent variable: Change in high-skill employment share
(1) (2) (3) (4) (5) (6)

high skilled defined by 67% cutoff 80% cutoff college and above
log(labor supply in 1980) 0.001 0.002∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.0007) (0.0006) (0.0007) (0.0007) (0.0006)
state fixed effects No Yes No Yes No Yes
Observations 722 722 722 722 722 722
R2 0.003 0.298 0.112 0.372 0.119 0.355
∗ p < 0.10, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01

Table 14: Change in High-Skill Employment Share and City Size: Robustness Checks

Notes: Columns (1)-(2) define the high skilled as occupations whose rank is above 67% of all occupations in
1980. Columns (3)-(4) define the high skilled as occupations whose rank is above 80% of all occupations in
1980. Columns (5)-(6) define the high skilled as workers who have a college education or above. Columns
(1), (3), and (5) leave out the state fixed effect and report the robust standard errors. Columns (2), (4),
and (6) use the state fixed effect and report standard errors clustered at the state level.
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Figure 12: Change in High-skill Employment Share with Respect to City Sizes

Notes: This figure displays the change in the skilled share from 1980 to 2013 against log of 1980 labor supply
(raw data). High skill is defined as occupation rank above 75% using the 1980 mean of log hourly wage.
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Figure 13: City Size in 2013: Model v.s. Data

Notes: We solve our model using the calibrated parameter values. We then calculate the model-implied
equilibrium city sizes for each commuting zone and plot them against the actual log(labor supply in 2013).
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Figure 14: Fragmentation Cost Predicted by the Gravity Equation

Notes: This graph shows the predicted log(fragmentation cost τ) implied by the gravity equation test with
the OLS estimation (controls are included) in Section 5. The x-axis is the data, and the y-axis is the
predicted value.
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