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Abstract

Firms are more productive in larger cities. This paper investigates a potential explanation that was
first proposed by Adam Smith: Larger cities facilitate greater division of labor within firms. Using a
dataset of Brazilian firms, I first document that division of labor is indeed robustly correlated with city
size, controlling for firm size. To quantify the importance of division of labor in explaining productivity
advantages of cities, I propose and estimate a quantitative model that embeds a theory of firms’ choice
of the optimal division of labor in a spatial equilibrium framework. In the model, the observed positive
correlation between firm’s division of labor and city size is generated by both a selection effect—firms
endogenously sort across space, choosing different extents of division of labor—and a treatment effect—
larger cities increase division of labor for all firms, possibly by reducing costs associated with greater
division of labor. Structural estimates derived from the model show that division of labor accounts for 17%
of the productivity advantage of larger cities in Brazil, half of which is due to firm sorting and the other half
to the treatment effect of larger city size. The theory also generates a set of auxiliary predictions of firms’
responses to an exogenous shock to division of labor. Exploiting a quasi-experiment—the gradual roll-
out of broadband internet infrastructure—I find causal empirical support for these predictions. Finally,
the quasi-experiment also provides out-of-sample validation for the structural estimation: The model is
successful in predicting the heterogeneous impacts of the new infrastructure across Brazilian cities.
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“The greatest improvement in the productive powers of labour ... seem(s) to have been the effects of

division of labour.”

– Adam Smith, The Wealth of Nations, 1776

1 Introduction

Firms are more productive in larger cities. Numerous theories have been put forth to explain this fact,

including knowledge spillover, sharing of indivisible public facilities, and availability of intermediate inputs

such as labor.1 However, empirical literature that quantifies the importance of these mechanisms is limited.

Understanding and quantitatively evaluating key sources of agglomeration forces is important, as different

mechanisms may generate different productivity and welfare implications for a given policy. As Lucas (1976)

points out, without knowing how policy affects the behavior of private agents such as firms, it is unwise to

predict the effects of a new policy based on past data.

This paper investigates one potential mechanism for the city-size-productivity relation: division of labor

in firms. The idea that division of labor may contribute to spatial productivity difference was first discussed

by Smith (1776), who proposes that factories in larger cities adopt greater division of labor, thereby raising

local productivity. However, there is little modern theory and no empirical work that studies the importance

of this force for the productivity advantages of larger cities. In this paper, I investigate this problem using a

combination of empirical, theoretical and quantitative analyses, and show that division of labor within firms

is an important source for the productivity advantage in larger cities.

To guide the empirical investigation into division of labor, I develop a theory of firm production and

organization that links firm-level observables to the concept of division of labor. Production of goods in any

firm requires combining a collection of tasks (Smith, 1776). The productivity benefits of division of labor

comes from increasing returns of scale at the worker level in performing these tasks. The optimal contract

is one in which firms subdivide the tasks into partitions with each worker specializing in a single partition,

called an “occupation.” The more partitions there are, the narrower the range of tasks that each worker

specializes in, and the greater the division of labor. Guided by the theoretical insight, I construct a firm-level

measure of division of labor using the number of partitions—or distinct occupations—within each firm.2

With this definition, I assemble a unique dataset on firm-level division of labor using a sample of matched

employer-employee records of Brazilian firms.3 The dataset allows me to document a new stylized fact on
1See Duranton and Puga (2004) for a review of this literature.
2In a contemporaneous work, Becker et al. (2019) document, using German worker survey data that quantify the number of

tasks performed within worker occupations, a negative relationship between a plant’s count of occupations and the width of its
average task range per occupation, i.e., the inverse of division of labor.

3The main dataset used is the confidential micro-level data from the Annual Social Report of Brazil (Relação Anual de
Informações, or RAIS). The RAIS dataset covers all registered firms in Brazil and contains comprehensive information on firm
and worker characteristics. The RAIS data classify workers into 6-digit CBO codes, each of which is accompanied by a detailed
description of the tasks involved. In contrast, most other matched employer-employee datasets, such as the Portuguese Quadros
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firms’ division of labor: There is greater division of labor inside firms in larger cities.4 The correlation remains

largely unchanged when controlling for characteristics such as firm size and skill intensity, and when I use

alternative definitions of division of labor.5 I also provide tests to show that the observed correlation is not

driven by multi-establishment firms or systematic differences in product varieties, share of informal workers,

as well as number of tasks performed within the establishment boundaries across different cities.

Though robust, the observed correlation may potentially be driven by many different channels, and cannot

be regarded as evidence showing the causal effect of city size on division of labor in and of itself. Separately

identifying each channel is crucial in studying how division of labor contributes to the productivity advantage

of cities. To unpack and quantitatively evaluate each channel, I develop a quantitative model in which the

spatial distributions of firms’ division of labor and productivity are determined jointly. The model generalizes

the model of firm production organization in the previous section and embeds it in a standard spatial sorting

model (Gaubert, 2018). Through the model, I propose potential mechanisms that generate the observed

correlation between division of labor and city size. Firms, exogenously heterogeneous in their production

complexity, choose division of labor and size of the city in which to locate to maximize profit. The model

makes two key reduced-form assumptions, each of which is microfounded in the appendix: First, there

is complementarity between division of labor and production complexity, e.g., more complex firms benefit

relatively more from labor specialization; second, there is complementarity between division of labor and city

size, e.g., larger cities reduce the costs of division of labor.6,7 Since in equilibrium, more complex firms choose

greater division of labor, and firms with greater division of labor benefit more from being in larger cities,

there is positive assortative matching between firm complexity and city size. Firms in larger cities exhibit a

greater division of labor through two channels: (i) a selection channel, i.e., more complex firms, which are

firms that would choose greater division of labor in any given city, endogenously sort into larger cities in

equilibrium; and (ii) a treatment channel, i.e., any given firm would choose a greater extent of division of

labor in a larger city. Identifying the latter channel is important for the purpose of investigating how city

size affects division of labor and, in turn, productivity. Without an experiment in which firms are randomly

allocated across space, it is difficult to separate these two channels empirically. The quantitative model, on

de Pessoal and French Déclarations Annuel des Données Sociales, only provide 4-digit occupation classifications. I provide more
details on the data and construction of the division of labor measure in Section 3 and Appendix A.

4For all empirical exercises, a firm is defined as an establishment for multi-establishment firms.
5For baseline analysis, I use the total number of 6-digit occupation codes to proxy the firm’s division of labor. In robustness

analyses, I use more aggregate occupation codes and a normalized measure for the heterogeneity of occupations within an
establishment. See Section 3 for more details.

6Examples of the costs include training costs of specialists (Kim, 1989), monitoring costs (Holmstrom, 1982), coordination
costs (Garicano, 2000), and the time lost in combining the output of specialized workers (Becker and Murphy, 1992).

7I microfound the first assumption following closely the argument in Costinot (2009), as detailed in Appendix B.3. I
microfound the second assumption in two distinct ways. First, following the Henry George Theorem (Arnott and Stiglitz, 1979),
larger cities spend more on non-rival public infrastructure (such as ICT infrastructure) and this infrastructure helps lower the
cost of division of labor, e.g., by reducing information or communication frictions within firms. Second, following Marshall
(2009), larger cities facilitate learning, inducing workers to pursue a more specialized set of skills that reduces the cost of
training. While the model remains agnostic on the precise mechanisms at work, in the empirical analysis I provide reduced-form
evidence for the importance of one particular channel: ICT infrastructure. See Section 4 for more detailed discussions.
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the other hand, allows me to do so by relying on the structure of the model.

I bring the model to data to recover estimates of the parameters for the quantitative analysis, using a

method of simulated moments. I parameterize an extended version of the model, which incorporates the

standard reduced-form agglomeration externalities in the urban literature (see, e.g., Allen and Arkolakis,

2014), the standard spatial sorting of firms (see, e.g., Gaubert, 2018), imperfect sorting of firms, and a

discrete set of cities. To quantify the contribution of division of labor to productivity difference across cities,

I perform a counterfactual analysis in which I shut down productivity improvement through division of labor.

I find that division of labor accounts for 17% of the relationship between productivity and city size—roughly

comparable to the importance of natural advantage and the labor-market-based knowledge spillover estimated

in previous literature.8 I further disentangle the roles played by spatial sorting of firms (i.e., the selection

channel) and the direct effect of city size (i.e., the treatment channel) in another counterfactual experiment,

in which I shut down the systematic sorting of firms due to division of labor. I estimate that each channel

contributes approximately half of the 17% productivity advantage through division of labor.

In the final part of the paper, I provide external validations to the theoretical framework and the quan-

titative assessment through a quasi-experiment in Brazil. To do so, I hypothesize that one possible channel

that generates the complementarity between division of labor and city size is through the provision of public

infrastructure. In particular, larger cities provide better Information and Communications Technology (ICT)

infrastructure, which potentially increases firms’ division of labor.9 If the hypothesis is true, an exogenous

improvement in ICT infrastructure in certain areas will lead to an increase in division of labor for firms

located in those areas. Importantly, the parameterized model generates two further predictions. First, in

response to an exogenous improvement in ICT infrastructure in a given city, the increase in the extent of

division of labor is larger for more complex firms, arising from the complementarity between division of labor

and complexity. Second, in response to an exogenous improvement in ICT infrastructure in a set of cities, the

increase in the extent of division of labor is larger for firms in larger cities because of the complementarity

between division of labor and city size. I confront these model predictions for how variables respond to

changes in ICT infrastructure with data, by exploiting the expansion of broadband infrastructure as part of

the Brazilian National Broadband Plan (PNBL henceforth). The new ICT infrastructure was implemented

gradually between 2012 and 2014, creating a quasi-experiment that allows me to identify its effects using a

difference-in-differences method. To identify the impact of improved ICT infrastructure on firms’ division

of labor, I compare establishments in locations that received new internet infrastructure to those that did

not during the gradual roll-out of the broadband infrastructure. That the alignment of the infrastructure
8Ellison and Glaeser (1999) find that natural advantage contributes to approximately 20% of productivity gains in larger

cities. Serafinelli (2019) shows that firm-to-firm worker flows explain about 10% of agglomeration advantages in higher-density
areas.

9Modern ICT technologies, such as fast internet, can facilitate greater division of labor within firms through a number of
mechanisms, e.g., by improving communications efficiencies, enhancing information storage and sharing, or reducing coordination
frictions within firms (see, e.g., Borghans and Weel, 2006; Varian, 2010; McElheran, 2014; and Bloom et al., 2014).
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was predetermined and implementation followed a geographically determined order reduces concerns about

nonparallel trends in the outcome of interest for locations on and off the new infrastructure network.10 I find

evidence that validates my hypothesis that better ICT infrastructure is indeed one channel that generates

the complementarity between division of labor and city size. More importantly, heterogeneities in the direct

treatment effect are consistent with the model predictions specified above. Finally, the quasi-experiment also

provides external validation for the structural estimates. Since the model is estimated using data before the

implementation of the new infrastructure, I am able to compare the model-based predicted impact to the

actual changes. Specifically, the estimated model predicts changes in the average division of labor within

different cities in response to ICT infrastructure improvement, which I find are similar to the actual changes.

The paper connects several strands of literature. First, it is related to studies on agglomeration external-

ities. The productivity advantage of larger cities has been studied extensively on the empirical front (e.g.,

Rosenthal and Strange, 2004; and Melo, Graham and Noland, 2009) and theoretically (e.g., Eeckhout and

Kircher, 2011; Davis and Dingel, 2019; Behrens, Duranton and Robert-Nicoud, 2014; and Gaubert, 2018).

My theoretical framework is most closely related to the one developed by Gaubert (2018), in which sorting

of firms is generated by a reduced-form assumption that more productive firms benefit more from being in a

larger city. My model builds on her framework by putting forth a microfounded theory for the reduced-form

assumption. This microfoundation allows me to both empirically identify a specific mechanism that gener-

ates the complementarity between firm technology and city size, and to derive a set of auxiliary predictions

consistent with the data on several margins. More generally, by offering a closer look at firms’ internal or-

ganization, the paper proposes theoretically and identifies empirically, a previously under-explored channel

that explains the productivity advantage of larger cities, further opening up the “black box” of agglomeration

externalities.

My paper complements works by Caliendo and Rossi-Hansberg (2012) and Caliendo, Monte and Rossi-

Hansberg (2015), which examine the productivity impacts of firm organization, defined by a firm’s vertical

hierarchical layers. I focus on a distinct yet equally important dimension of firm organization, i.e., horizon-

tal specialization by means of division of labor. Theoretically, I build on ideas introduced by Becker and

Murphy (1992), who argue that division of labor is a tradeoff between gains from worker specialization and

coordination costs, and by Costinot (2009), who finds that the gains from division of labor are related to

the complexity of the production process.11 My paper is also related to Becker et al. (2019), which ex-

tend a Melitz (2003) model to relate within-plant occupation to worker task specialization and discuss the

productivity and wage inequality implications of division of labor. I enrich these theoretical discussions by

developing a spatial equilibrium framework that links a firm’s decision on division of labor to its location
10I conduct an extensive set of robustness tests, including direct inspection of pre-trends, which supports a causal interpretation

of my results.
11In a related empirical work, Boning, Ichniowski and Shaw (2007) document, using detailed panel data on production lines

in U.S. minimills, that the adoption of a more effective organization structure is strongly influenced by the complexity of the
production process, which suggests the presence of such a complementarity.

5



choice, to study the relationship between division of labor and city size and determine how firms’ organization

decisions contribute to spatial productivity differences.12

My paper also contributes to a small empirical literature on division of labor. To my knowledge, my

work is the first comprehensive empirical study of division of labor within firms. Previous literature tends to

focus on particular industries, such as physicians (Baumgardner, 1988) and lawyers (Garicano and Hubbard,

2009). The results of these studies support my stylized fact that division of labor increases with city size.

However, these detailed case studies, despite their advantage of offering precise measurements within the

relevant industries, may not be representative of the wider economy and are thus unsuitable for assessing the

general equilibrium effects of division of labor on productivity. A notable exception is Duranton and Jayet

(2011), who study the whole of the manufacturing sector using French census data, and find that scarce spe-

cialist occupations are overrepresented in larger cities. My dataset allows me to go beyond this by observing

the extent of division of labor within firms, which motivates my fully specified model of firm behavior with

underlying heterogeneity. Incorporating heterogeneous firms is also essential to study how firm sorting affects

division of labor across different cities. My paper is perhaps most related and complementary to the contem-

poraneous work by Becker et al. (2019), which uses German data to study empirically and quantitatively the

impact of division of labor on within-plant wage dispersion and economy-wide wage inequality.

Lastly, I provide new evidence on the impact of ICT infrastructure. There is growing consensus that

the adoption of ICT is associated with improvements in productivity.13 My work focuses on the impact of

ICT infrastructure at the firm level and explores a new outcome, i.e., firms’ division of labor. I demonstrate

causally how access to faster internet affects productivity by increasing division of labor within firms, thus

expanding the body of evidence on the productivity impact of new technologies.

The remainder of the paper is organized as follows. Section 2 outlines a stylized model that connects firm

observables to division of labor. Section 3 describes the data and definitions, and documents the correlation

between division of labor and city size. Section 4 develops a spatial equilibrium model with endogenous firm

organization to unpack the channels driving the observed correlation. Section 5 summarizes the quantitative

framework and the estimation process. Section 6 presents results from the counterfactual exercises. Section 7

details results from a quasi-experiment, which provide empirical support for the model. Section 8 concludes.
12Chaney and Ossa (2013) extend Krugman (1979)’s “new trade model” by allowing for an explicit decision regarding firms’

division of labor. They show that an exogenous increase in the aggregate number of consumers induces a deeper division of
labor due to increase in the residual demand for the firm. My model differs in two ways. First, it incorporates the direct effect
of city size on division of labor, i.e., two firms facing the same residual demand may adopt different extents of division of labor if
they are located in cities of different sizes. Second, my theory is a full spatial equilibrium model with endogenously determined
city sizes.

13See Hjort and Tian (2021) and Draca, Sadun and Reenen (2009) for reviews of studies on developing and developed countries,
respectively.
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2 A stylized theory of division of labor

The first step in studying division of labor empirically is to find a sensible measure for division of labor at the

firm level. To guide my empirical investigation, I develop a theory of firm production and organization, which

links firm-level observables to the concept of division of labor directly. The broad logic of the model can be

sketched as follows. Inspired by Smith (1776), I first observe that in any firm, production of a good requires

combining a collection of tasks.14 Following Costinot (2009), the production technology further generates

increasing returns of scale at the worker level in performing individual tasks. I show that the optimal contract

involves a firm subdividing these tasks into partitions (called “occupations”) and each worker specializing

in a single occupation. The more occupations there are, the narrower the range of tasks that each worker

specializes in, and the greater the division of labor there is within the firm. Informed by the theoretical

insight, I construct a firm-level measure of division of labor using the number of “partitions”—or occupation

counts—within the firm.

2.1 Production technology

In each firm, a continuum of tasks in the unit interval t ∈ [0, 1] must be performed to produce one unit of its

output. Production follows the following technology:

Q =
∫ ∞

0

[∫ 1

0
1(t, u)

ε−1
ε dt

] ε
ε−1

du; 0 ≤ ε < 1, (1)

where Q is the total units of output and 1(t, u) is 1 if task t is performed on the u-th unit and 0 otherwise.

The elasticity of substitution between tasks, ε, is less than 1, implying that tasks are complementary.15

Each worker is endowed with a fixed amount of labor supply, split between learning and production

(Costinot, 2009). Prior to production, workers need to spend time to acquire competency in performing the

tasks. The amount of labor required by worker i performing task t is given by:

l(i, t) =
∫ ∞

0
1(i, t, u)du+ z(t), (2)

where 1(i, t, u) is 1 if worker i performs task t on the u-th unit, and zero otherwise. z(t) is the labor inputs

required to learn how to perform task t. (2) implies that the production technology has increasing returns

to scale at the worker-task level: Given the fixed cost of learning, the average cost of performing a task goes

down when the task is performed on a greater number of units.

Finally, without loss, I normalize all tasks such that the worker’s learning cost for each task is constant
14Smith (1776) notes that there are at least 18 distinct tasks associated in making a pin in a pin factory.
15In the extreme, when ε = 0, tasks are perfect complements and the production follows a Leontief technology.
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across the tasks,

z(t) ≡ z, ∀ t ∈ [0, 1].

Note that this normalization implies two things when we compare z across different firms: 1) Given the set

of tasks, a higher z means that a task is more complex and thus requiring more time to learn; and 2) given

the complexity of each task, a higher z also indicates that there are more tasks involved in producing the

output.

2.2 Production organization

Firms organize the production by designing a set of occupations, O, and writing a set of contracts, C, that

assign workers to these occupations. Formally, each firm has two control variables:

1. A partition O = {Ok}Nk=1 of the sets of tasks in [0, 1]; and

2. A mapping C(i) : [0, l]× R+ → {O, ∅}.

Lemma 1 Suppose O∗ and C∗ are the optimal organization of a profit-maximizing firm, then

1. for all i ∈ l, there exists k = 1 . . . N such that C∗(i, u) ∈ {O∗k, ∅} for all u ∈ R+; and

2. for all k = 1 . . . N , O∗k is such that ∫
t∈O∗

k

dt = 1
N
.

The formal proof can be found in Appendix B.5. Intuitively, the first part states that all workers specialize

in one occupation. Since there is increasing returns to scale at the worker-task level, workers who know

how to perform a given set of tasks involved in an occupation should perform it as many times as possible

to minimize the learning costs. The second part states that all occupations include the same number of

tasks. This can be explained by observing that worker productivity depends on the number of tasks included

in an occupation. Specifically, a marginal decrease in the number of tasks in an occupation increases the

time available for actual production. This increase is larger for occupations with more tasks. Since profit

maximization requires that marginal changes in worker productivity be equalized across occupations, it also

requires that each occupation includes the same number of tasks.16

2.3 Division of labor and occupations

Though stylized, this theory of production organization reveals an important link between the concept of

division of labor and an observable variable at the firm level—the number of distinct occupations. Division
16It is useful to note that under Lemma 1, all workers with say 1 unit of labor supply endowment have 1 − z

N
unit of labor

available for production. Worker productivity is maximized when N is infinite and every worker learns an infinitesimal task.
In other words, without costs associated with greater division of labor, profit maximization requires that each skill be used as
intensively as possible. I defer discussion on the costs of division of labor to Section 4.

8



of labor is the extent of worker specialization within a firm. In the context of this model, a more specialized

worker is one who performs fewer number of tasks. A firm organizes its production process by partitioning

the tasks that have to be performed to produce its output into occupations and assign to its workers. The

more occupations there are (higher N), the fewer the number of tasks that each worker specializes in (lower
1
N ), and the greater the division of labor. Admittedly, the model omits other features that may affect the

relationship between division of labor and the observed number of occupations within the firm; however, it

elucidates in a transparent way how the extent of division of labor can be correlated with the number of

occupations. Within the firm boundary, a smaller count of occupations implies that the workers who do the

jobs tend to carry out a wider range of tasks. Conversely, in firms with a larger count of occupations, each

job only requires a narrower range of tasks to be performed. Notably, the approach to use occupation counts

as a proxy for division of labor is validated empirically by Becker et al. (2019), which use German worker

survey data to show that within-plant occupation counts are inversely correlated with the tasks performed

by workers, and hence positively associated with the extent of division of labor.

In the ensuing parts, I build on this theoretical insight and measure division of labor empirically using

the total number of distinct occupations within a firm. I also discuss the limitations of this measure and the

various robustness checks in place to address them in the following section.

3 Data and stylized facts

In this section, I first describe the data sources and definitions used in the empirical analysis. Using the

theoretical insights developed in the previous section and the dataset constructed, I then document a new

stylized fact: There is greater division of labor within firms in larger cities.

3.1 Data

The primary data source is the Brazilian Annual Social Information Report (Relação Anual de Informações,

or RAIS), spanning the period from 2006 to 2014. Constructed annually by the Ministry of Labor and

Employment (Ministerio do Trabalho e Emprego, or MTE), this administrative dataset provides a high-

quality census of the universe of establishments operating in the formal market. RAIS data contain linked

employer-employee records. Both employers and employees have an incentive to accurately report relevant

information: The former are liable for fines if they fail to report, and the latter are required to provide

accurate information in RAIS to receive payments for several government benefit programs. Also, the MTE

conducts frequent checks on establishments across the country to verify the accuracy of information reported.

The dataset has been used extensively in the literature (e.g., Dix-Carneiro and Kovak, 2017; Helpman et al.,

2017). The scope of RAIS includes almost all formally employed workers, i.e., workers who have signed work

cards that give them access to the benefits and labor protections afforded by legal employment systems.

9



The data contain unique, anonymized, and time-invariant establishment identifiers that allow me to track

establishments over time. I also use the establishment’s geographic location (municipality) and sector, and

worker-level information including occupation, hours and days worked, and December earnings.17

These data have several advantages over other datasets used in previous studies. First, RAIS is a census

rather than a sample, so it is representative at a fine geographic level. Second, relative to Duranton and Jayet

(2011), which studies division of labor at the broader industry level, the matched employer-employee records

available in RAIS allow me to study division of labor within establishments and, in turn, develop a theory

that models establishment-level decision regarding division of labor, instead of industry level. Third, I can

analyze adjustments in establishments’ division of labor in response to shocks using a difference-in-differences

(DiD) method, as the data is panel in nature and available every year. This allows me to control for both

observable and unobservable establishment characteristics. Fourth, there has been considerable concern about

the accuracy of self-declared occupations in the population census data.18 Worker information in RAIS, in

contrast, is provided by the employer (typically the human resources department). Hence, information on

worker occupation is more accurate and reliable. Fifth, RAIS data offer detailed occupation codes at the

6-digit level of the Brazilian CBO-02 codes, with a total of more than 2,500 occupation codes, and each

accompanied by detailed task descriptions. The richness of the data allows me to chart out, in a precise

manner, an establishment’s internal organization structure and construct a measure for establishment-level

division of labor.

I supplement the main dataset with survey data. For information on local population and land area, I use

the Brazilian National Household Sample Survey (PNAD). I rely on the Brazilian Annual Industry Survey

(PIA) for sector-level data on firm revenue, value-added, and the number and value of intermediate inputs.

For all empirical and structural analyses, I limit the sample of firms to only manufacturing sectors.19

3.2 Definitions

Guided by the model in Section 2, I construct a measure of within-firm division of labor, reflecting the

heterogeneity of 6-digit occupation codes within an establishment. I first remove occupation codes that

involve primarily managerial or supervisory tasks. Managers play a coordinating role within an organization

(e.g., Bloom et al., 2014), and therefore excluding them allows me to more accurately measure the extent of

task division in the actual production process.20 I then use the remaining codes to construct two measures of

division of labor. The first is a simple count of the number of nonmanagerial or nonsupervisory occupation
17RAIS reports earnings for December and average monthly earnings during employed months in the reference year. Following

Dix-Carneiro and Kovak (2017), I use December earnings to avoid seasonal variation or month-to-month inflation.
18For example, Sullivan (2009) estimated that 9% of occupation choices in the National Longitudinal Survey of Youth are

misclassified.
19Manufacturing sector corresponds to Brazilian Industry Codes CNAE20 10000-32990.
20I identify all 6-digit CBO occupation codes that are related to supervisory or managerial functions using a machine-learning

method, as explained in Appendix A. All empirical results are robust to keeping all occupations codes and available upon
request.
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codes within an establishment (henceforth referred to as the number of occupations within an establishment).

I consider an alternative measure, called the “specialization index,” to account for the difference in distribution

of workers across occupations. This is defined as one minus the Herfindahl index across occupations within

an establishment (Ciccone, 2002; Duranton and Jayet, 2011). Formally, let o represent an occupation at

the 6-digit CBO level, the specialization index for establishment j with the set of occupation codes O is

calculated as:

Nj = 1−
O∑
o=1

(
lj(o)
lj

)2
, (3)

where lj(o) and lj denote the number of workers employed in occupation o and the total number of workers

in establishment j, respectively. Large values of Nj indicate higher degree of division of labor. Finally, for

robustness tests, I use the more aggregate 4-digit CBO codes. A more detailed discussion on the construction

of measures for division of labor is offered in Appendix A.

I define cities by “microregions,” which are formally defined geographic unit constructed by Brazilian

Statistical Agency (Instituto Brasileiro de Geografia e Estatística, or IBGE). A microregion is a cluster of

economically integrated and geographically contiguous municipalities with similar geographic and productive

characteristics (Demográfico, 2000). For my analysis, I use all 558 microregions. To compare city sizes, I use

a normalized measure based on the population density.21

3.3 Division of labor and city size

Using the dataset, I document a new stylized fact on division of labor: There is greater division of labor

within firms in larger cities. Specifically, I use the following OLS regression to investigate the relationship

between division of labor and city size:

logNjt = α0 + α1 logLm(j)t + δs(j) + δt + Xjt + εjt,

where Njt is the division of labor within an establishment j in year t—measured either by the number of

occupations or the specialization index defined in (3), Lm(j)t is the size of city m in which establishment j is

located in year t, δs(j) is the sector fixed effect, δt is the year fixed effect, and Xjt is a set of controls.22

Baseline results: Table 1 summarizes the relationship between division of labor and city size. Columns

(1) and (2) show the unconditional and conditional correlations, respectively. In Column (2), we see that
21Density is defined by microregion population size over the geographic area of the microregion. Standard urban models

typically imply that both the density and the level of city population may generate agglomeration externalities. I follow Ciccone
and Hall (1996) and use density as my primary agglomeration measure. Since microregion population and density are strongly
and positively correlated, the choice of measure matters little for my analyses.

22The controls include establishment-level controls: establishment employment sizes, occupation categories (defined as 3-digit
CBO occupation codes), and skill intensities within firms; and city-level controls: state fixed effects, sector diversity within the
city (computed using the Herfindahl index of employment across sectors within a city), and the total employment of sector s in
city m.
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within the same sector, holding fixed establishment size and other controls, division of labor is strongly and

positively correlated with city size. The estimated elasticity, at 0.025, implies that an establishment located

in São Paolo has 19% more measured extent of division of labor compared to a similar establishment—in

terms of its sector, size, skill mix, etc—located in Itaperuna, a medium sized city in Brazil.

Robustness: I next consider different subsets of firms to assess the robustness of the baseline results. First,

firms with multiple establishments may allocate different organizational functions across its establishments

located in different cities. To make sure that this potentially endogenous allocation is not driving the results,

I study only mono-establishment firms. As shown in Column (3) of Table 1, the positive correlation between

division of labor and city size remains strong.23 Second, while I consider an empirical measure of division

of labor using the heterogeneity of occupations within an establishment as guided by theory, it is possible

that the number of occupation codes is correlated with other variables, e.g., the diversity of establishment

outputs. That is, if establishments located in larger cities tend to produce a greater variety of products—

thus pushing up the number of occupation codes—it will generate a spurious correlation between division of

labor and city size. To investigate this possibility, I use only data from sectors that produce homogeneous

products (Foster, Haltiwanger and Syverson, 2008), for which the potential for product diversification is

limited. Results in Column (4) of Table 1 remain qualitatively similar to the baseline results, implying that

the product diversity channel is unlikely driving the observed correlation. Finally, Columns (5) - (8) show

analogous analysis using the alternative definition of specialization index. The positive correlation remains

strong under this alternative measure.24

Dependent variable Log no of occs Specialization index
All Mono-estb Homog All Mono-estb Homog

(1) (2) (3) (4) (5) (6) (7) (8)
Log (city size) .0576*** .0253*** .0243*** .0303*** .0188*** .0137*** .0132*** .0143***

(.002) (.0011) (.0011) (.0103) (.0007) (.0005) (.0005) (.0048)
Other controls No Yes Yes Yes No Yes Yes Yes
Obs 2960066 2960066 2776735 6111 2960066 2960066 2776735 6111
R-sq .116 .86 .856 .912 .078 .526 .529 .554

Standard errors clustered by city in parentheses. Significance levels: * 10%, ** 5%, ***1%. All regressions include sector
and year FEs. Specialization index is defined in (3). Establishment-level controls are establishment size, skill intensity, and
occupation categories (defined as the number of 3 digit occupation codes) within the establishment. City-level controls are
state dummy, Herfindahl index of employment across sectors within the city, and the size of local sectoral employment.
Occupations are measured by 6-digit Brazilian CBO codes. Sectors are measured by 5-digit Brazilian CNAE codes.
Mono-estb firms refers to firms with a single establishments. Homogeneous sectors include corrugated and solid fiber
boxes, bread, carbon black, roasted coffee beans, ready-mixed concrete, wooden flooring, gasoline, ice, plywood, and sugar
(Foster, Haltiwanger and Syverson, 2008).

Table 1: Correlation of establishment’s division of labor and city size
23Interestingly, the results with only multi-establishment firms—with a firm fixed effect to control for cross-firm differences—

also show a positive correlation between division of labor and city size. See more details in Appendix A.2.
24The results are also robust to using the more aggregate 4-digit and 3-digit CBO codes, as reported in Tables 3 and 4 in

Appendix A.2.
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In addition to the considerations above, another important dimension of firm heterogeneity that the theory

in the previous section and this analysis abstract from is the variation in the set of tasks performed within

establishment boundaries. If within a sector, there is systematic variation in the number of tasks performed

in firms located across different cities, it may create bias in our correlation estimates. For example, if firms in

larger cities tend to undertake a greater number of tasks, then the positive correlation reflects the variation of

firm boundary, rather than the variation in extent of division of labor within the firm boundary. While I do

not have data that allow me to measure firm boundaries, there is a literature arguing that firms tend to focus

on a narrower range of fewer number of tasks in larger cities, since it is easier to outsource some peripheral

functions (for example business services) when there is an abundance of such providers in the same location

(Duranton and Puga, 2005), or when these providers are more efficient (Akerman and Py, 2010). This implies

that establishments with the same “true” extent of division of labor could have fewer number of occupation

codes in larger cities as some of the tasks necessary to produce the outputs are outsourced. To the extent

that this effect is present, it would lead to a downward bias in my elasticity estimate. In other words, we can

interpret the estimated correlation as a lower bound of the actual value. Additionally, though establishment

boundaries are not directly observed in the data, I consider an additional check to account for potential biases

introduced by systematic variation in boundaries across space. I categorize establishments into two groups,

based on their likelihood to break up their production process, which is measured at the industry level using

“fragmentation index” documented in Fort (2017). I then estimate the correlation between division of labor

and city size for these two groups separately. Reassuringly, correlation results remain both qualitatively and

quantitatively close to the baseline estimates, with the correlations for establishments more likely to fragment

not significantly different from those less likely to do so, as shown in Table 7 of Appendix A.2.

Finally, as an alternative way to control for establishment size, I divide establishments into deciles based on

their sizes and find strong positive correlations between city size and division of labor across all groups. This

test will also partially address the problem of not observing informal workers within formal establishments.

Based on the Brazilian Urban Informal Economy Survey, the share of informal workers is negatively correlated

with firm size. As shown in Table 5 of Appendix A.2, the positive correlations across all deciles suggest that

the result is unlikely driven by differences in informal employment across space.

Discussion: The positive correlations documented above, though robust, cannot be interpreted as causal

relationships. Instead, these are general equilibrium observations since both division of labor and production

location are endogenous to firms. Despite the extensive set of controls and robustness checks considered, two

firms located in different cities may have unobservable differences that are correlated with both division of

labor and the location choice. Therefore, to adequately answer my research question—how city size affects

firm’s division of labor and, in turn, productivity— I develop a model that captures various potential forces

that drive the observed correlation in the next section.
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4 A quantitative model

In this section, I lay out a model which incorporates various channels that can potentially generate the

observed correlation between city size and firm’s division of labor. The goal is to construct a parsimonious

theoretical framework that has a quantitative bite, can be generalized in various ways, and ultimately can

be used for policy analysis. The theory generalizes the model of firm production organization in Section 2

and embeds it in a standard spatial sorting model with heterogeneous firms (Gaubert, 2018). The general

equilibrium framework allows us to study firm’s organizational and locational decisions jointly.

The theory’s basic logic can be sketched as follows. Firms are differentiated exogenously in their process

(and/or product) complexity. Given city size, a firm determines its optimal division of labor based on its

complexity. Larger cities have comparative advantages for firms with greater division of labor but have

higher factor prices. In equilibrium, more complex firms choose greater division of labor. Since firms with

greater division of labor benefit relatively more from being in larger cities, there is, in equilibrium, positive

assortative matching between firm complexity and city size. Through the lens of the model, the observed

correlation between division of labor and city size is generated through two distinct channels: (i) a selection

channel, i.e., more complex firms, which are firms that would choose greater division of labor in any given

city, endogenously sort into larger cities in equilibrium; and (ii) a treatment channel, i.e., any given firm

would choose a greater extent of division of labor in a larger city.

4.1 Set-up and agent’s problem

The economy consists of a continuum of homogeneous individuals of mass L̄. There is also a continuum of

homogeneous sites that can potentially be developed into cities. The number of cities and their corresponding

population sizes are endogenous. Following Gaubert (2018), I use L to index both the city and its size, as

it is the sufficient statistic that summarizes all economic characteristics within a city. The economy has a

continuum of heterogeneous firms producing in cities using local labor. City size grows with increases in local

labor demand. I further assume that each firm produces only one good and that labor is the only factor in

production. Agents and firms are both perfectly mobile across cities.

Each individual in city L is endowed with 1 unit of labor supply, which they supply inelastically and earn

a wage w(L). Agents consume a bundle of traded good and land. For simplicity, they require one unit of land

for accommodation and do not increase their utility by consuming more land. Following Behrens, Duranton

and Robert-Nicoud (2014), the utility function is assumed to be:

U = Xu(L), (4)

where X is the consumption of traded good and u(L) is the local amenity.
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Consumers choose varieties within the bundle of traded goods X according to a CES aggregator:

X =
[∫

x(z)
σ−1
σ dz

] σ
σ−1

, (5)

where σ > 1 is the elasticity of substitution across varieties z.25

The amenity level in city L, u(L), on the other hand, reflects the possible congestion externalities imposed

on urban amenities that are affected by the size of the city. Following Allen and Arkolakis (2014), I assume

that the overall amenity in a city of size L can be written as:

u(L) = κL−η, (6)

where κ > 0 and η ≥ 0. κL−η can be interpreted as the inverse of urban cost associated with residing in

a larger city. In Appendix B.1, I show that this functional form assumption can be microfounded using a

standard model of a monocentric city in which commuting costs increase with population size.

The spatial mobility assumption ensures that homogeneous agents’ utility is equalized across space in

equilibrium. The equilibrium level of utility, Ū , is obtained by substituting (6) into the utility function:

Ū =
[
w(L)
P

]
κL−η, (7)

where P is an aggregate price index for X. Since the final good is freely traded, P is same in all cities.

Given (7), I derive the equilibrium income of an agent in city L:

w(L) = w̄κ−1Lη, (8)

where w̄ = ŪP is an endogenous variable to be pinned down in general equilibrium.

4.2 Firms and production

I turn now to the production side of the economy. Firms differ exogenously in their fundamentals, called the

“complexity.” Firms choose their division of labor, production scale, and production location to maximize

profits. Firms engage in monopolistic competition, and outputs produced by firms are freely traded across

space.26

25To keep the theoretical framework parsimonious, I consider a single-sector economy. The model can be easily extended to
incorporate multiple sectors. Indeed, for the quantitative analysis in Section 5, I extend the baseline model to a multi-sector
economy and allow for sector-specific parameters in the structural estimation to retain flexibility and incorporate systematic
variations across different sectors.

26I focus on the tradable sector in my model. Under the further assumption that goods are costlessly traded across space,
distance between cities plays no part in the model. I make the assumption for zero trade costs largely because it is convenient
to derive my analytical results. In Appendix B.6, I provide proof to show that all theoretical results hold with costly trade.
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4.2.1 Production Technology

In the model, firms are heterogenous in their complexities. One way to interpret firm complexity can be done

through the lens of the model developed in Section 2: It denotes (i) the learning cost for each task required

to produce the output; and (ii) the total number of tasks. A more complex product is therefore one that

requires more tasks to be performed in its production process and/or one that involves more difficult tasks

that require more learning time. Firm z produces its output using the following technology:

Q(z) = ψ(N,L; z)l, (9)

where N denotes division of labor in firm z and l denotes the number of workers within the firm. The

endogenously determined firm productivity, defined as output per worker, is given by ψ(N,L; z), which

depends on the key endogenous variables N , division of labor within the firm, and L, the city size, as well as

the exogenous complexity parameter z.27

4.2.2 Market structure

There is an infinite supply of potential entrants who can enter the market. Firms pay a sunk cost fE in final

good X to enter and draw a complexity parameter z from a distribution F (·). Once firms discover z, they

choose the size of the city in which they want to produce, the size of the firm, and the optimal division of

labor.

4.2.3 The firm’s problem

The firm maximizes its profit by choosing the optimal division of labor, firm size, price, and production

location, given the demand and local labor costs. Firm’s problem can be formally expressed as follows:

max
N,l,p,L

pQ− w(L)l, (10)

subject to:

Q = ψ(N,L; z)l. (11)

Given the isoelastic preferences in (5), the demand schedule faced by firm z is:

p(z) = Q−
1
σR

1
σP

σ−1
σ , (12)

where Q = L̄x(z), since quantity produced equals the product of the quantity demanded by each agent and

the number of agents, R denotes the total revenue, and P =
(∫
p(z)1−σdz

) 1
1−σ denotes the price index.

27I assume that ψ(N,L; z) is increasing in z, so that productivity is higher for a more complex firm and a firm will never
choose to produce below its exogenously given level of complexity, i.e., ∂ψ

∂z
> 0.
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Consider a firm of complexity draw z in a city of size L. Given the CES preferences and the monopolistic

competition, firms set constant markups over their marginal costs. For each firm z, the firm’s profit can be

written as a function of division of labor N and city size L,

max
N,L

π(L,N ; z) ≡ max
N,L

(σ − 1)σ−1

σσ

(
ψ(N,L; z)
w(L)

)σ−1
RPσ−1. (13)

Given L, firms choose the optimal division of labor, N(L; z), to maximize profits:

N(L; z) ≡ arg max
N

π(L,N ; z). (14)

Substituting N(L; z) into the profit function (13), I get the optimal profit of firm z in city L:

π∗(L; z) ≡ (σ − 1)σ−1

σσ

(
ψ(L; z)
w(L)

)σ−1
RPσ−1, (15)

where ψ(L; z) ≡ ψ(N(L; z), L; z). Lastly, firm employment, conditional on being in a city of size L, is given

by

l(L; z) = (σ − 1)π
∗(L; z)
w(L) . (16)

4.3 Spatial equilibrium

I characterize spatial equilibrium in this section. I show that under a simple assumption, there is positive

assortative matching between firms’ complexity draw and city size. In equilibrium, the positive assortative

matching generates the positive correlation between division of labor and city size.

In spatial equilibrium, homogeneous workers are indifferent across locations, while firms choose their

locations optimally based on their complexity draws.28 To fully analyze the characteristics of the equilibrium,

I make the following assumptions:

Assumption 1 ψ(N,L; z) is twice-differentiable, and displays

(a) strict log-supermodularity in firms’ complexity z and division of labor N , i.e.,

∂2 logψ(N,L; z)
∂N∂z

> 0;

and

(b) strict log-supermodularity in city size L and firms’ division of labor, i.e.,

∂2 logψ(N,L; z)
∂N∂L

> 0.
28See Appendix B.2 for a formal definition of the spatial equilibrium.
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The first part of Assumption 1 states that there is complementarity between complexity and division of

labor, e.g., a more complex production process benefits more from greater division of labor. The stylized

model in Section 2 provides one microfoundation that generates such relationship. In that model, the gains

from division of labor come from the savings on learning costs. Since more complex products require more

learning time, the gains from worker specialization are higher for more complex firms.29 The second part

of Assumption 1 states that there is complementarity between city size and division of labor, e.g., larger

cities lower costs associated with greater division of labor. I hypothesize that one channel that generates

this is through provision of better ICT infrastructure in larger cities. Modern ICT technologies, such as fast

internet, can facilitate greater division of labor within firms through a number of channels, e.g., by improving

communications efficiencies, enhancing information storage and sharing, or allowing firms to employ more

capable software applications (e.g., Borghans and Weel, 2006; Varian, 2010; McElheran, 2014; and Bloom

et al., 2014). In equilibrium, larger cities, with their larger tax bases, provide better local infrastructure

including ICT infrastructure. Therefore, larger cities foster greater division of labor, creating the comple-

mentarity between N and city size L. I provide empirical support of this hypothesis in Section 7.30 In what

follows, I remain agnostic on the sources generating these relationships to highlight the generic features of

an economy with such complementarities.

I highlight three noteworthy points before proceeding. First, it is important to note that while I could

include all other cases of ψ(N,L; z) in the current discussion, I choose to focus on the empirically relevant

cases specified above to avoid a cumbersome taxonomy. Under the current set of assumptions, the model

generates a positive correlation between division of labor and city size, consistent with the empirical pattern

documented in Section 3.

Second, the baseline model adopts a minimum set of assumptions necessary to obtain the general equi-

librium outcome, in which firms in larger cities have greater division of labor. This generates productivity

advantage for larger cities through a specific channel, i.e., their ability to foster greater worker specialization.

In estimating the model, I include additional terms that summarize other channels that might also increase

firm productivity in larger cities. By separately identifying these channels, I can investigate and isolate the

importance of division of labor in affecting productivity differences across cities. I discuss this in detail in

Section 5.

Lastly, in Section 7, I present causal empirical evidence that is consistent with the log-supermodularity

assumptions between N and z, and between N and L. I do so by focusing on one particular channel mentioned
29See Appendix B.3 for a formal discussion.
30While I propose this specific channel that generates the complementarity between N and L, the model is general enough not

to preclude the existence of other sources. In Appendix B.4, I propose another microfoundation for the complementarity between
city size and division of labor. Workers acquire both extensive and intensive human capital, which correspond to the breadth
and depth of their knowledge set, respectively. Knowledge acquisition is costly. Larger cities have a comparative advantage in
acquiring intensive human capital. As a result, firms with a greater division of labor—in which the requirement for extensive
knowledge set is lower—would benefit more by being in a larger city, leading to the complementarity between N and L when
the level of intensive human capital is optimally chosen. More details are discussed in Appendix B.4.
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above, i.e., better ICT infrastructure in larger cities facilitates greater division of labor. The model generates

specific predictions for changes in firms’ division of labor in response to an exogenous improvement in ICT

infrastructure. I test these predictions using a quasi-experiment in Brazil.

4.3.1 Characteristics of the profit function

In my theoretical framework, there is complementarity between complexity and division of labor, and between

city size and division of labor. Combining these assumptions generates the following results:

Lemma 2 Suppose that Assumption 1 holds, firms’ profit function, π(L,N ; z), displays log-supermodularity

in (z, L,N).

Lemma 3 Suppose that Assumption 1 holds, the optimal division of labor given z and L, denoted by N(L; z) =

arg maxN π(L,N ; z), increases in (z, L).

Division of labor depends on the trade-off between gains and costs of specialization. Given the log-

supermodularity between L and N , a larger city increases firms’ division of labor, e.g., by lowering the costs

at the margin. Similarly, the log-supermodularity between z and N implies that as complexity increases,

division of labor goes up too, perhaps through increasing the benefits of worker specialization at the margin.

Using a classic result in monotone comparative statics (Topkis, 1978), since the profit function π(L,N ; z)

is log-supermodular in (z, L,N), once the firm solves for its optimal division of labor, N(L; z), the profit

function π∗(L; z) displays log-supermodularity in (z, L).31

Lemma 4 Denoted by π∗(L; z) ≡ maxN π(L,N ; z), the optimal firm profit given z and L is log-supermodular

in (z, L), if Assumption 1 holds.

4.3.2 Equilibrium systems of cities

Following the standard literature (e.g., Henderson and Becker, 2000; Behrens, Duranton and Robert-Nicoud,

2014), I assume that cities emerge endogenously as a result of “self-organization.” A new city opens up when

there is incentive for firms and/or workers to do so. This happens when there exists a set of firms and workers

that would be better off with their choices of the city size. Cities are therefore the outcome of the mutually

compatible optimal choices of a continuum of firms and workers. Recall that the optimal profit function of

firm z in city L is

π∗(L; z) = (σ − 1)σ−1

σσ

(
ψ(L; z)
w(L)

)σ−1
RPσ−1.

31In addition to Assumption 1, I also assume that ∂2ψ
∂z∂L

is non-negative, i.e., more complex firms are not worse off in larger
cities relative to less complex firms. In Section 5, I formalize this assumption and quantitatively assess the extent of direct
interaction between firm complexity and city size.
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Lemma 2 implies that the profit function shown in (15) is log-supermodular in (z, L), suggesting that more

complex firms benefit more from being located in larger cities. However, given the symmetric fundamentals,

this does not preclude the existence of a symmetric equilibrium, in which all types of firms are equally

represented in all cities. I show in Appendix B.7 that such an equilibrium is stable only if the gains from worker

specialization are too small to cause agglomeration. When worker specialization is sufficiently rewarding, a

small perturbation in city size would push the symmetric equilibria into a heterogeneous equilibrium.

Symmetric equilibria are both empirically counterfactual and theoretically not very illuminating. Hence-

forth, I focus on heterogeneous equilibria. Given its complexity draw z, the firm’s problem is to choose L to

optimize its profit. Using (15), the first order condition with respect to L is therefore:

ψL
ψ

= η

L
, (17)

where ψL = ∂ψ(L;z)
∂L .

In (17), ψLψ corresponds to the marginal productivity benefit of being in a larger city. η
L corresponds to

the marginal cost of being in a larger city. It is equal to the extra costs due to more expensive labor costs.

When production location is optimally chosen, the marginal gains from being in a larger city are equal to

the marginal costs.

Under regularity conditions, there is a unique profit-maximizing city size for a firm with complexity z.

Define the solution to (17) as

L∗(z) ≡ arg max
L≥0

π∗(L; z). (18)

Under the self-organization assumption of cities, the set of city sizes L in heterogeneous equilibria is

necessarily the outcome of the mutually compatible optimal choices of the continuum of individuals and

firms (see, e.g., Henderson and Becker, 2000 and Behrens, Duranton and Robert-Nicoud, 2014). Assume that

for some firm z, no city size of L∗(z) exists; then there is a profitable deviation for these firms to coordinate

and open up this city on an unoccupied site. It will attract the corresponding workers by offering them a

wage marginally higher than w(L∗(z)). The number of such cities adjusts so that each city has the right size

in equilibrium. Therefore, in a heterogeneous equilibrium, the set of city sizes available in equilibrium, L, is

the optimal set of city sizes for firm distribution f(z). Given L, the optimal location choice for each firm z

is defined by the following matching function:

L(z) = arg max
L∈L

π∗(L; z). (19)

Using the definition in (19) and Lemma 4, I can invoke a classic theorem in monotone comparative statics

(Topkis, 1978) and obtain the following key theoretical result.
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Proposition 5 Suppose that Assumption 1 holds. In the heterogeneous equilibrium, within a sector, high-z

firms sort into larger cities. More formally, the matching function is increasing in z, or L′(z) > 0.

The intuition for Proposition 5 is straightforward. Larger cities have higher urban costs due to congestion,

so workers require higher wages in these locations. Larger cities attract firms because of the productivity

advantage through division of labor. In particular, more complex firms benefit more from being in larger

cities. In equilibrium, these firms are willing to pay more to be in a larger city, thus outbidding less complex

firms. There is therefore spatial sorting for firms, which supports the equilibrium differences in the extent of

worker specialization.32

4.4 Characterizing spatial equilibrium

In the heterogeneous spatial equilibrium, division of labor N(z), profit π(z), revenue r(z), and firm size l(z)

are all determined by the matching function L(z). The strict sorting of z generates the strict sorting of firm

division of labor, profits and revenue. I denote the equilibrium variables using the following expressions:

N(z) = N(L(z); z), (20)

π(z) = (σ − 1)σ−1

σσ

(
ψ(L(z); z)
w(L(z))

)σ−1
Pσ−1R, (21)

r(z) = σπ(z), (22)

l(z) = π(z)
(σ − 1)w(L(z)) . (23)

Given the results in Proposition 5, these firm-level observables also exhibit complementaries between firm

complexity and city size, as stated in the following result:

Proposition 6 In equilibrium, firms’ division of labor, revenue, and profit all increase with city size. For-

mally, consider two firms z and z′. If L(z) > L(z′), then N(z) > N(z′), π(z) > π(z′), r(z) > r(z′), and

w(z) > w(z′).

In equilibrium, high-z firms sort into larger cities. This generates the motivating fact presented in Section

3: Firms’ division of labor is greater in larger cities.33 Through the lens of my model, I show how the corre-

lation can be potentially achieved through two distinct channels: 1) Selection channel: more complex firms,

which are firms that would choose greater division of labor in any given city, endogenously sort into larger

cities in equilibrium; and 2) Treatment channel: given that larger cities facilitate greater division of labor for

all firms, any given firm would endogenously choose greater division of labor if it is located in a larger city.
32In Appendix B.8, I further detail the properties of the heterogeneous spatial equilibrium. I prove the existence of the city-size

distribution fL(·), and verify that fL(·) is unique and stable.
33In Appendix B.10, I provide further sector-specific evidence on the equilibrium results, i.e., positive correlations between

division of labor and city size, as well as between firm revenue and city size.
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Out of these two channels, only the treatment channel is relevant for the purpose of investigating how city

size affects division of labor. Empirically, however, it is impossible to separate these two mechanisms short

of running a natural experiment in which firms are randomly allocated across space. By developing a quan-

tifiable model, I can tackle this question by relying on the structure of the model. Through a counterfactual

experiment, I pin down the direct effect of city size by shutting down the selection channel. I describe the

estimation strategies in more detail in the next section.

5 Quantitative analysis

In this section, I structurally estimate an extended version of the model following a two-step procedure: In

the first step, I estimate three sets of parameters that can be inferred directly from the data, and are separate

from the rest of the system; in the second step, I estimate the remaining parameters. I make parametric

assumptions about firms’ production function, simulate the profit-maximizing decisions of each firm, and

estimate the remaining parameters using a method of simulated moments (MSM) approach (Gourieroux,

Monfort and Renault, 1993). The main objects of interest are the extents of complementarities between

division of labor and city size, and between division of labor and firm complexity. In the context of the

parameterized version of my model, the first parameter controls the extent to which the cost of division of

labor falls with city size and the second parameter controls the extent to which the benefits of division of

labor rise with firm complexity.

The structural estimation uses data from RAIS and PIA in 2010. Using RAIS data, I construct establishment-

level information on employment, labor payment, division of labor, location and industry classification. The

PIA data report sector-level information on value-added, inputs, and production. I first remove establish-

ments with annual labor payment below 10,000 Brazilian reals (approximately 2,000 USD) and trim the

bottom and top 1% of the data. This leaves me with 192,286 establishments. For the estimation, I aggregate

establishments into 20 sectors and allow parameters to vary by sectors. Summary statistics are reported in

Table 8 of Appendix C.

5.1 Model specification

To carry out the structural estimation, I need to fully characterize the features of firm production function.

I adopt the following functional form assumption for ψ:

logψ(N,L; z) ≡ (log z)(1 + logN)c − (1 + logN)(log L̃)−θ, (24)

where L̃ = L
L0

, and L0 is the smallest city size in the set of city size distribution L.

Under this functional form assumption, it is straightforward to see that the first term, (log z)(1 + logN)c,
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is strictly increasing in z and N . Importantly, the relationship between firm complexity and division of labor

is determined by c. A positive value of c would confirm model assumption. When c = 0, I obtain a model

in which the worker productivity is solely determined by firms’ complexity draws. Analogously, the second

term, −(1 + logN)(logL)−θ is decreasing in L and N . θ governs the relationship between division of labor

and city size. A positive value of θ is consistent with model assumption. If there is no relationship between

N and L, then θ = 0.

Additionally, following the conventional literature, I assume that log z is distributed according to a normal

distribution with mean variance νz, truncated at its mean to prevent log z from being negative.

5.2 Model extensions

The parsimonious model presented in Section 4 constitutes a minimum set of elements to elucidate key

mechanisms at work in order to focus on investigating the relationship between city size and division of

labor, which in turn determines the relationship between city size and productivity through this source. To

bring the model to data, however, I need to incorporate additional features to reflect other relevant forces at

work that may also affect the observed relationship between city size and productivity.

Specifically, I adopt four extensions: (i) multiple sectors, (ii) other sources of agglomeration externalities,

(iii) imperfect sorting of firms, and (iv) spatial equilibrium with a discrete set of cities. My extended model

allows me to obtain results under less restrictive assumptions than Section 4, and to evaluate the contribution

of division of labor to productivity differences across cities relative to other forces, on which my baseline model

is silent.

Equation (25) shows the updated firm productivity after incorporating the first three extensions. First, I

incorporate multiple sectors in the economy so that we can allow for sector-specific parameters to incorporate

systematic differences across firms in different sectors. With multiple sectors, the bundle of traded goods X

is a Cobb-Douglas combination of goods over s = {1, . . . , S} sectors.

X =
S∏
s=1

Xξs
s , with

S∑
s=1

ξs = 1.

Within a sector s, consumers choose varieties according to a CES aggregator:

Xs =
[∫

xs(z)
σs−1
σs dz

] σs
σs−1

,

where σs > 1 is the elasticity of substitution across varieties z within sector s. Lastly, the aggregate price
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index for the multi-sector composite good summarizes he price indexes Ps for all tradable sectors:

P =
[
S∏
s=1

(
Ps
ξs

)−ξs]−1

.

With this extension, all results in Section 4 hold for firms within a given sector.

Second, I include two terms in firms’ productivity function that summarize other sources of agglomeration

externalities, from which my model abstracts. The first term, αs logL, incorporates productivity advantage

of larger cities, which are not correlated with firm complexity or division of labor. This includes, but is

not limited to, the sorting of skills among heterogeneous workers, knowledge spillover, and natural amenity

differences. αs > 0 implies that a firm located in a larger city is more productive for reasons beyond division

of labor. The second term, log zj logLυs , incorporates potential direct interaction between firm complexity

and city size. While the baseline model assumes that firm complexity interacts with city size only through the

proposed channel of division of labor, I do not impose this restriction in the structural estimation. Instead,

when υs > 0, this term allows more complex firms to sort into larger cities for reasons beyond division of

labor.

Next, I introduce an error structure that allows firms’ ex post productivity to vary within a city. In the

baseline model, within a sector, there is strict sorting of firms across city sizes. As a result, within a city,

all firms in the same sector share the same division of labor, productivity, revenue, and profit. In reality,

there may be other factors that affect a firm’s location choice, and there is great heterogeneity across firms

within a city. To capture the imperfect sorting of firms, I add an error structure by assuming that each firm

j draws an idiosyncratic shock εjL for each city size L, where εjL is i.i.d. across city size and firms. I further

assume that these shocks follow a Type I Extreme Value distribution, with mean zero and variance νL. The

shock captures idiosyncratic motives for firms’ location choices. With the extension, in a sector, there is a

distribution of complexities allocated to each city size. However, of the complexity level dominating each

city, there is still positive assortative matching between the complexity and city size. Therefore, equilibrium

characteristics in Section 4.4 still hold.34

In summary, with these three extensions, productivity of a firm j with complexity draw z in sector s takes

the following form:

logψj(N,L; z) = αs logL+ log zj logLυs + (log zj)(1 + logN)cs − (1 + logN)(logL)−θs + εjL, (25)

where αs captures the standard reduced-form agglomeration externality and υs determines the strength of

direct interaction between complexity and city size. When θs = 0 or cs = 0, I obtain a standard firm sorting

model (see, e.g., Gaubert, 2018). Additionally, when υs = 0, I obtain a classic model of agglomeration
34I assume that εjL is city-size specific, rather than city-specific. If misspecified, these shocks can represent the maximum of

shocks at a more disaggregate level, such as at the city level. See Gaubert (2018) for an excellent discussion of this.
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externalities without division of labor or firm sorting (see, e.g., Allen and Arkolakis, 2014).

Finally, I consider a discrete set of cities in estimating the model. In the baseline model, I assume that

the whole economy consists of a continuum of identical sites. This assumption simplifies the theoretical

analysis and generates the uniqueness of the heterogeneous equilibrium. For the quantitative exercise, I take

the choice set of city sizes L as exogenously given. Note, however, the equilibrium distribution of cities is

still endogeneoulsy determined as I do not impose restrictions on the existence or number of cities of any

particular size in spatial equilibrium. Cities, indexed by m, are ordered by their city size Lm. Given the

log-supermodularity of the profit function in (z, L), more complex firms still sort into larger cities. Within a

sector, each city is occupied by a range of firms with different complexity draws, denoted by [zs(m), z̄s(m)].

Spatial equilibria are determined by the following indifference condition:

πs(z̄,m) = πs(z,m+ 1), ∀Lm ∈ L. (26)

While the new spatial equilibria may no longer be unique, the equilibrium characteristics presented in Section

4.4 hold for both continuous and discrete cases.

5.3 Estimation procedure

5.3.1 Step one: Direct calibration

I begin by estimating the parameters that can be extrapolated directly from the data without using the

structure of the rest of the model. These are the elasticity of substitution σs and the Cobb-Douglas share ξs
for each sector, and the elasticity of urban costs with respect to city size, η, in worker’s utility function.

I assign values to parameters σs, ξs, and η as follows. The elasticity of substitution in the CES demand

function is calibrated to match the sector-level markup charged to consumers, where σs
σs−1 = revenues

costs
. I then

estimate the Cobb-Douglas share of each sector ξs by measuring its share of value-added produced. Lastly,

η corresponds to the elasticity of wages with respect to city size, from (8). To account for heterogeneity of

workers across space, I calculate the elasticity using residuals from a Mincerian wage regression and obtain

an elasticity of η = 3.1%.35

5.3.2 Step two: Method of simulated moments

In the second stage, I use MSM to estimate the remaining parameters. Given parameter estimates from

the first step, the parametric assumptions on model specifications and distributions of the underlying firm

heterogeneity, and idiosyncratic shocks to firms’ location choices, I simulate the profit-maximizing decisions
35I first regress log hourly earnings of the workers in my sample on a gender dummy, a race dummy, a categorical variable for

10 levels of education attainment, a quartic in years of potential experience, and all pair-wise interactions of these values (where
regressions are weighted by annual hours worked). I then take the residuals from the Mincerian regression and regress on log of
city size to obtain the elasticity of wages to city size.
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of each firm and calculate a set of non-parametric moments to characterize the economy. I then iterate

over new choices of parameters and select the best set of parameters to minimize the distance between the

simulated moments and their data analogs.

5.4 MSM procedure and moments

Given the distributions of firm complexities and idiosyncratic firm-city-size shocks, parametric assumptions,

and the parameters calibrated in the first stage, six parameters remain to be estimated for each sector: the

reduced-form agglomeration externality (α), the interaction between firm complexity and city size (υ), the

complementarity between firm complexity and division of labor (c), the complementarity between division

of labor and city size (θ), the variance of complexity distribution (νz), and the variance of the firm-city-size

shocks (νL). I use MSM to back out the six parameters, χs = (α, υ, c, θ, νz, νL)s, for each s = {1, . . . , S}.

I draw a sample of 100,000 firms for each sector and find the profit-maximizing division of labor, N∗,

conditioning on city size, according to the following equation:

logN∗j ≡ arg max
N∈R+

log zj(1 + logN)cs − (1 + logN)(logL)−θs . (27)

This gives me a firm productivity function conditioning on city size:

logψj(L; z) = αs logL+ log zj logLυs + log zj(1 + logN∗j )cs − (1 + logN∗j )(logL)−θs + εjL. (28)

Based on logψj(L; z), firms make a discrete choice of city size, according to the following equation:

logLs(zj) ≡ arg max
L∈L

logψj(L; z)− logw(L)

= arg max
L∈L

(αs − η) logL+ log zj logLυs + log zj(1 + logN∗j )cs −
1 + logN∗j
(logL)θs + εjL.

(29)

To estimate the five parameters in χs, I match six sets of simulated and data moments for every sector:

(i) geographic distribution of firms, (ii) firm-size distribution, (iii) cross-city variations in firm size., (iv)

cross-city variations in division of labor, and (v) within-city variations in division of labor.36

The first three sets of moments jointly identify α, υ, νz and νL. The identification of the two comple-

mentarity parameters, c and θ, is possible because I observe firm-level division of labor. In equilibrium, the

joint parameter θ
1−c captures the relationship between firms’ division of labor and city size. By observing

36I measure the geographic distribution of firms using the share of employment in a given sector that falls into one of the four
bins of city sizes, in which the city-size bins are defined as threshold cities with less than 25%, 50%, and 75% of overall sectoral
employment. To measure firm-size distribution, I use five moments that characterize nonparametrically the distribution. These
bins are defined by the 25, 50, 75 and 90th percentiles of the distribution. On increases in average firm size and division of
labor across city sizes, I use 8 moments summarizing the average labor payment and division of labor across four quartiles of
city sizes. Lastly, I use the variance of firms’ division of labor in each quartile of city sizes, to summarize variation in division
of labor within cities.
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how the average division of labor increases across city sizes, I can identify θ
1−c . Note that I purposely use

the unconditional correlation between division of labor and city size because I want to retain the identifying

variation arising from the general equilibrium effect of city size on firm’s division of labor. Indeed, the model

implies that the firms in larger cities are on average larger in size and more complex in their production

processes. To separately identify c and θ, I consider within-city variations in firms’ division of labor. Given a

city size and within a sector, the impact of city size on division of labor is the same for all firms located there.

I can, therefore, identify the complementarity between division of labor and complexity—i.e., c—using the

within-city variation in firms’ division of labor, relative to that in firm complexities. Intuitively, all else equal,

small changes in firm complexity would generate a huge variation in division of labor, if the complementarity

is strong. See Appendix C for further discussions on moments and identification.

The MSM process chooses parameters χ̂s to minimize the distance between simulated moments and

targeted moments, using the criterion function:

χ̂s = arg min (ms,data −ms,sim(χs))′Js(ms,data −ms,sim(χs)), (30)

where ms,data is the vector of empirical moments for sector s, and ms,sim is the vector of simulated moments

calculated at χs. I use the diagonal of the variance-covariance matrix of the moments as the weighting

matrix Js, rather than the optimal full variance-covariance matrix, due to concerns about bias raised by

Altonji and Segal (1996).37 I find the parameters that minimize the criterion function using the particle

swarm optimization method (Kennedy and Eberhart, 1995). I provide more details on the estimation process

in Appendix C.

5.5 Estimation results

In this section, I present results from the MSM estimation. Estimated parameters by sector are reported in

Table 9 of Appendix C. I first examine model fit for the set of targeted moments (reported in Figures 7 to 11

in Appendix C). Overall, the estimated model captures well the cross-sectoral heterogeneities in treatment

effects in response to the technology shock, location patterns, cross-city variations in firm sizes and division

of labor, and within-city variations in division of labor. The fit for firm-size distribution in labor payment is

better for the upper tail than the lower tail. The result is expected, since I target the upper-tail quantiles in

the estimation.
37The variance-covariance matrix, Ωs, is calculated from ms,data, using a bootstrap procedure. Within each sector, I first

sample, with replacement, firms from my data for 2,000 times. For each resampling b, I calculatembs, the new moments generated
from the bootstrap sample. I then calculate

Ωs =
1

2000

2000∑
b=1

(mbs −ms,data)(mbs −ms,data)′.

The weight matrix Js is simply the diagonal of Ωs.
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I next move on to nontargeted moments. In particular, I consider two sets of nontargeted moments that

combine the 20 sectoral estimation results. The first set considers the relative magnitude of c—the esti-

mated complementarity parameter between complexity and division of labor—across different sectors. The

estimation is made for each sector separately. I make no assumption on the relative size of c across sectors.

However, if the sectoral complexity is higher, i.e., the average firm in a given sector is more relatively more

complex, then one can expect that complementarity to be stronger too. To compare the estimated comple-

mentary parameters with sectoral complexities, I consider two data proxies. The first measure uses Brazilian

Input-Output data and computes the number of intermediate inputs used by each sector in producing the

sector-level outputs. The intuition is that a more diverse input structure may lead to a more complex out-

put (see, e.g., Levchenko, 2007). The second focuses on the dimension of product sophistication. Following

Hausmann, Hwang and Rodrik (2007) and Wang and Wei (2010), I measure sector-level complexity using the

export share of goods by G3 economies (i.e., U.S., European Union, and Japan).38 To relate the estimates

of c to the two empirical proxies, I estimate the rank correlations between them. Rank correlations are 0.68

and 0.62 for the measures using the number of intermediate inputs and the G3 export share, respectively.

Figure 12 of Appendix C.4 plots the rank of the estimates across sectors against the empirical measures, and

shows that the two sets of values line up well.

Next, I examine the simulated city-size distribution. The fact that city distribution follows Zipf’s law is

one of the most remarkable empirical facts in economics.39 In estimating the model, I impose no restriction

on the number of cities in each city-size bin, which defines the city-size distribution. Using the estimates, I

can solve for the city-size distribution in equilibrium (see Appendix C for detailed steps). As shown in Figure

13 of Appendix C.4, the estimated city-size distribution adheres to Zipf’s law and follows the actual city-size

distribution well.

6 Division of labor and productivity advantage of cities

Armed with the estimated model, I next conduct a counterfactual exercise to quantify the contribution of

division of labor to the productivity gains in larger cities. Productivity advantages in larger cities are well

documented in the literature (see, e.g., Rosenthal and Strange, 2004; Melo, Graham and Noland, 2009).

Unlike previous theories, in my model, the productivity distribution is determined not only by the standard

agglomeration externalities and firm sorting, the variance of firm complexity distribution, and firm-city-

size idiosyncratic shocks, but also by firms’ decisions regarding the extent of division of labor. Moreover,

the productivity impacts through division of labor is driven by two forces—the direct effect of city size on
38The key insight is that due to comparative advantage, goods exported by these advanced economies tend to be more

technologically sophisticated. As a result, they also tend to involve more complex production processes.
39According to Zipf’s law, when we order cities in a country by size and regress the log of the rank against the log of the size,

we get a straight line with a slope of -1.
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productivity by facilitating division of labor (i.e., the treatment channel) and the increase in productivity

driven by spatial sorting of more complex firms (i.e., the selection channel). The counterfactual exercise

detailed below unpacks these different forces.

I begin by studying how firm productivity varies city size in Brazil, using the following OLS regression

on the simulated set of data:

log ψ̂j = β0 + β1 logLj + δs(j) + εj (31)

where ψ̂j is the simulated firm productivity defined in (25) for firm j, Lj is the optimal city size chosen

by the firm according to (29), and δs(j) is a sector fixed effect. Under this set up, β1 is the elasticity of

firm productivity with respect to city size. Running the OLS regression in (31), I get an OLS estimate

of β̂1 = 0.0881.40 This measure is within the range of existing measures of agglomeration externalities, at

0.02–0.10 (Rosenthal and Strange, 2004; and Melo, Graham and Noland, 2009), providing another external

validation for the estimation results.

To study how division of labor affects the productivity advantage of larger cities, I conduct the following

counterfactual analysis, in which I shut down any productivity increase through the division of labor channel.

This is achieved by making two changes in simulating the economy. First, I assume that firms choose

their optimal city sizes according to the complexity draw and their firm-city-size specific shocks, instead of

considerations related to division of labor, i.e.,

log L̃s(zj) = arg max
L∈L

(αs − η) logL+ log zj(logL)υs + εjL. (32)

Second, I do not allow firms’ to choose their optimal division of labor, by fixing firm-level division of labor

based on the average value within their respective sector.

Under this counterfactual scenario, I re-estimate the model, which gives me a new set of productivities and

their corresponding spatial distribution. Under the restriction, differences in firm productivity across space

are only driven by firm complexity draws and the agglomeration externalities determined by the firm-city-size

specific shocks. This counterfactual exercise allows me to identify what would be the realized productivities

if division of labor did not affect the productivity and location choices of firms. Re-estimating (31) using

the new simulated data leads to an elasticity of firm productivity to city size of 0.0727. By this account,

division of labor accounts for 17% of the productivity advantage in larger cities.41 That is, absent of division

of labor as a channel, the productivity advantage of larger cities would have been reduced by one-sixth.

The estimated contribution is comparable to the importance of natural advantage and labor-market-based

knowledge spillover estimated in previous literature (see, e.g., Ellison and Glaeser, 1999; Serafinelli, 2019).42

40This implies productivity goes up by 8.81% when city size is doubled.
41Without the endogenous choice of division of labor, the elasticity estimate goes down by 0.0154 (0.0881 - 0.0727) , which is

17% (0.0154 / 0.0881) of the baseline elasticity.
42I also consider an alternative approach in which I re-estimate log ψ̂j by removing the standard agglomeration externalities,
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A key challenge in the reduced-form exercise in Section 3 is that we cannot separately identify the relative

contributions by firm’s spatial sorting decisions (i.e., the selection channel) and the direct effect of city sizes

(i.e., the treatment channel) in generating the correlation between division of labor and city size, which in turn

determines the correlation between productivity and city size through division of labor. Using the estimated

model, however, we can separate the two channels by relying on the structure of the model. Specifically, to

examine the importance of firm selection to the 16% productivity contribution through division of labor, I

conduct a second counterfactual exercise. In the model, firms sort into larger cities because larger cities foster

greater division of labor, through the log-supermodularity assumption embedded in the firm productivity

function between division of labor and city size. To shut down the systematic sorting of firms, I allocate

firms to city sizes according to the complexity draw and their firm-city-size specific shocks according to (32),

same as the first counterfactual exercise. However, once firms are allocated to a city size, they are allowed

to choose the optimal division of labor based on their complexity draws and the city to which they are

allocated. This counterfactual exercise effectively shuts down the firm selection channel, thereby allowing me

to study the realized productivity with only the treatment channel that captures the direct effect of city size

on division of labor. I find, by re-estimating (31), that the elasticity estimate drops to 0.0803, which is about

half of the reduction in the first counterfactual experiment in which both channels are shut off. This implies

that the firm sorting channel accounts for about half of the spatial productivity differences through division

of labor.43

Relying on the structure of the model and the detailed Brazilian establishment-level data, I identify

productivity advantage of cities through the channel of division of labor and further separate the relative

contributions by the selection and treatment channels. Admittedly, as with most quantitative exercises,

the question remains as to what extent the results are driven by the model assumptions. To lend further

credibility to the key quantitative findings, I rely on a quasi-experiment in Brazil in the next section, in order

to provide additional qualitative and quantitative support to my model.

7 External validation to proposed theory

In this section, I use Brazilian micro-level data to validate the qualitative and quantitative predictions from

the model, through a quasi-experiment. The theoretical framework presented in Section 4 makes two key

assumptions, i.e., the log-supermodularities between N and z, and between N and L. I first show that given

α logL+ log z(1 + logL)υ , in (25). This assumes that the productivity advantage in larger cities only comes from my proposed
channel of division of labor. Re-estimating (31) gives me similar results. I find that division of labor generates an elasticity
estimate of 0.0151, which is 17% of the original value.

43Without systematic firm sorting, the elasticity estimate goes down by 0.0078 (0.0881 - 0.0803), which is 50% (0.0078 /
0.0154) of the contribution of division of labor to the spatial productivity difference. I perform a robustness check in which I
shut down the direct effect of city size on firm’s division of labor while allowing for firm sorting, i.e., firms can endogenously
sort into cities based on their complexities but have to choose a fixed level of division of labor. The results are similar to this
approach.
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these assumptions, the model generates two predictions: In equilibrium, an exogenous shock to division of

labor (i) affects more complex firms more, and (ii) affects firms in larger cities more. In practice, many

factors potentially affect firms’ decisions on division of labor. To establish a plausibly exogenous variation

in division of labor, I rely on a quasi-experiment in Brazil in which a national infrastructure plan increases

firms’ division of labor. I use the quasi-experiment to examine the heterogeneities in the treatment effects in

accordance with the theoretical predictions.

Additionally, the quasi-experiment also provides out-of-sample validation to the structural estimation, by

examining quantitative predictions from the model. Since the model is estimated without using data after

the implementation of the new infrastructure, the comparison between the model-based predicted impact

and the actual changes provides an assessment on the fit of the estimated model.

7.1 Heterogeneous impact of division of labor shocks

Recall the firm productivity function in (25):

logψj(L; z) = α logL+ log zj logLυ + log zj(1 + logN∗j )c − (1 + logN∗j ) logL−θ + εjL.
44

Note that the optimal level of division of labor, under this specific parametric assumption, is

N∗j = exp[c
1

1−c (log z)
1

1−c (logL)
θ

1−c − 1]. (33)

Under the parametric assumption, the log-supermodularities in ψ between (N, z) and (N,L), under As-

sumption 1, are determined specifically by the signs of c and θ, for which positive values would imply the

complementary relationships between these two pairs of variables. To provide further support for the as-

sumptions, consider an infinitesimal exogenous shock to N , denoted by ∂I, i.e.,

∂ logN =
(
c

1
1−c (log z)

c
1−c (logL)

θ
1−c − 1

)
∂I > 0.45

Given the complementary assumptions, the exogenous shock has heterogeneous effects for firms with different

complexity parameters and located in different cities, as stated in the following proposition.

Proposition 7 Consider an exogenous shock, ∂I, to firm’s division of labor, if c > 0 and θ > 0, then:

1. Within a city, the increase in division of labor is higher for more complex firms, i.e.,

∂2 logN
∂ log z ∂I > 0.

44I omit the sector subscript on parameters for expositional simplicity.
45In this case, the envelop condition implies that the firms’ and workers’ location choices do not change.
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2. Across cities, the increase in division of labor is higher for firms in larger cities, i.e.,

∂2 logN
∂ logL∂I > 0.

The formal proof can be found in Appendix B.5.46 Intuitively, the shock reduces (increases) the costs

(benefits) of division of labor at the margin. Given the complementarity between division of labor and

complexity, more complex firms will benefit more from the shock, thus increasing their division of labor to a

larger extent. Additionally, as stated in Proposition 5, more complex firms sort into larger cities given the

complementarity between division of labor and city size. This implies that across cities, affected firms located

in larger cities will also benefit more from the shock and increase their division of labor to a greater extent

relative to those in smaller cities. These two predictions regarding the heterogeneity of the impacts from

the local shock speak directly to the complementarity assumptions, which are at the heart of my theoretical

framework. I next test the model predictions formally using a quasi-experiment in Brazil.

7.2 Quasi-experiment in Brazil

I rely on a quasi-experiment in Brazil to provide causal evidence in support of the model predictions in

Proposition 8. The shock to division of labor arises from a national ICT infrastructure plan that affects

various Brazilian regions differently. The quasi-experiment allows me to examine the heterogeneities in the

treatment effects in the theoretical predictions. Moreover, by focusing on a specific hypothesis that generates

the complementarity between division of labor and city size, I provide causal evidence on the existence

of one potential microfoundation behind the assumed complementarity: Larger city provides better public

infrastructure, through its larger tax bases—e.g., ICT infrastructure that reduces the communication frictions

and coordination costs within a firm—thereby facilitating a greater extent of division of labor for firms in

these larger cities. In Appendix B.4.2, I provide the formal description for the link of this microfoundation

to the baseline model.

7.2.1 Background

The quasi-experiment is a large-scale ICT infrastructure project through the National Broadband Plan (Pro-

grama Nacional de Banda Larga, PNBL henceforth). In Brazil, the availability of broadband access closely

reflects the country’s wide variation in city size, as illustrated in Figure 1.47

This uneven distribution of broadband access is a direct result of lack of infrastructure for private internet

providers in remote and low-density areas. Before 2010, the government played a very limited role in broad-
46While the results focus on the parameterized model, in the appendix I provide proof for both the non-parameterized and

parameterized models.
47According to the 2010 Census Survey, fixed broadband penetration rate was 11% in Sao Paolo but only 1.5% in the low-

density northeastern region. The correlation between city size and broadband penetration ratio was 0.79 in 2010.
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Figure 1: Broadband backbone and population density in 2010

band provision, leaving private operators to provide broadband infrastructure where they find it profitable to

do so (Jensen, 2011; Knight, Feferman and Foditsch, 2016).48 The prohibitively high cost of installing new

broadband backbones in remote and low-density areas had prevented more even distribution of broadband

availability. As a result, smaller cities of Brazil had no access to fast internet connection. To address this

problem, the federal government launched the largest ICT infrastructure project in 2010, i.e., PNBL.

The key objective of PNBL is to provide broadband access in poorly served areas, to trigger economic

development and reduce regional inequalities (Knight, Feferman and Foditsch, 2016). With a budget of

$600mil USD a year for four years, by 2014 the PNBL expanded broadband coverage from 681 to 2,930

municipalities; the increase amounted to 40% of the total population. I focus on a major initiative of PNBL

that builds new national backbones extending to the remote areas of Brazil.49 Between 2012 and 2014, PNBL

added 48,000 km of new broadband backbone. Table 10 in Appendix D compares establishment characteristics

between control and treatment groups. On average, treated establishments have greater division of labor and

a higher share of managers, and are larger in size.50

7.2.2 Additional data and sample

I assemble a set of geo-coded data to assess the impact of the new policy that expands broadband acces-

sibility in Brazil. I download the alignment of existing broadband networks from the Brazilian National
48This is unlike other developing countries in which national backbones are typically built by a national state-owned telecom

(see, e.g., Hjort and Poulsen, 2019).
49“Backbones” are national trunk infrastructure that brings traffic from international submarine cables in coastal regions to

inland parts of the country. Backbones consist of high-capacity fiber optic cables. See Appendix D.2 for more discussion.
50Even though a key policy objective for the PNBL is to expand the broadband network into the smaller, less developed areas

in Brazil, the backbone infrastructure has to originate from the submarine cable landing points along the coast, and tend to
pass through major cities before reaching the smaller cities. See Appendix D.1 for more extensive discussions on the background
and details of the PNBL.
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Figure 2: New broadband backbones implemented as part of PNBL: 2012-2014

Telecommunications Agency (Agencia Nacional de Telecommunicacoes, or Anatel). Data on the new broad-

band network are collected from a number of decentralized sources, including the Brazilian National Teaching

and Research Network (Rede Nacional de Ensino E Pesquisa), press releases and annual reports from the

companies contracted to implement the relevant infrastructure (including Telebras, Oi, Vivo, and Nextel).

Information on municipality boundaries is obtained from IBGE. Locations of the submarine cable landing

points are obtained from TeleGeography.51 I geo-code all the data into shp files, and process them using

QGIS to construct a consistent dataset for the quasi-experiment. The most detailed geographic information

I observe for establishments is at the municipality level. I thus measure the distance between establishments

and the new broadband network, using the centroids of the municipalities in which the establishments are

located. Both the centroids and the nearest distance are computed by QGIS using WGS 84 Projection.

Following conventional literature (e.g., Banerjee, Duflo and Qian, 2020), I use geographic distance measured

in kilometers rather than travel distance.

In testing the model predictions, I use a balanced panel of establishments for the period 2006 to 2014. To

investigate the interaction of the new infrastructure with city size and sectoral complexity measures, I remove

those establishments that relocate or change their sector classifications during the study period. This leaves

827,829 establishments over 9 years, or 91,981 establishment-year observations, for the empirical analysis.
51Data can be downloaded from the following web sources: http://www.anatel.gov.br/dados/2015-02-04-18-

36-10; https://www.rnp.br/en/search?words=rua&begin=1681; http://www.telebras.com.br; http://www.oi.com.br;
https://www.vivo.com.br; http://www.nextel.com.br; http://www.ibge.gov.br/english/geociencias/default_prod.shtm; and
https://www.submarinecablemap.com.
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7.3 Empirical strategy

The first empirical test is to investigate the relationship between division of labor within establishments

in a time period and whether the establishments are connected to broadband backbone cables. This test

ascertains that the new ICT infrastructure indeed affects firm’s extent of division of labor. I run:

logNjt = α+ βBackbonejt + δj + δt + εjt, (34)

where logNjt is the measured division of labor within establishment j at time t. Backbonejt is a dummy

variable equal to one if establishment j is “connected” to the new backbone added in year t. All specifications

include an establishment fixed effect, δj , that controls for any time-invariant differences across establishments,

and a year fixed effect, δt, that controls for any establishment-invariant shocks to division of labor. Standard

errors are clustered at the municipality level.52 The key coefficient of interest here is β, which measures

the effect of new broadband availability on division of labor within establishments. The model predicts that

β > 0.

Following Hjort and Poulsen (2019), I determine whether an establishment is “connected” to broadband

internet based on its geographic distance to the nearest backbone cable. From a technical perspective,

connectivity decreases exponentially as one moves further away from the backbone network (Banerji and

Chowdhury, 2013). Since I lack information on the middle and last-mile infrastructure, I cannot determine

the actual adoption of broadband internet at the establishment level. Instead, I use its distance to the nearest

backbone network to assess the feasibility that an establishment is connected to the backbone network.53

The range that makes connecting to a broadband backbone cable feasible is between 100 km to 400 km. For

baseline analysis, I define a location as connected to the new backbone if the distance to the nearest backbone

cable is less than 250 km. I vary the radius for robustness tests.

The model makes predictions regarding heterogeneities in the treatment effects, as stated in Proposition

8. Specifically, the impacts of the new ICT infrastructure are larger for establishments located in larger

cities relative to smaller cities, and for more complex establishments relative to less complex ones. While

firm complexity is not directly observable, we can test the model prediction using proxies that measure the

average firm complexities at the sector level. To this end, we revert to the two measures considered in Section

5.5: (1) number of intermediate inputs used by each sector in producing the sector-level outputs, and (2) the

export share of goods by G3 economies. I test these predictions using (35) and (36). The model predicts

that γ > 0 and ω > 0.

logNjt = α+ βBackbonejt + γBackbonejt × logLm(j),t0 + δj + δt + εjt, (35)
52The results are also robust to using Conley standard errors to account for possible spatial correlations across locations.
53Essentially, I am defining an “intent to treat” variable, instead of the actual treatment. The estimate for β is, therefore, a

lower bound of the actual effect of a faster internet connection on firms’ division of labor. At the same time, using intent to
treat also addresses the potential endogeneity in firms’ decision to adopt new communications technologies.
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logNjt = α+ βBackbonejt + ωBackbonejt × log zs(j),t0 + δj + δt + εjt, (36)

where logLm(j),t0 is the size of the city m in which establishment j is located and log zs(j),t0 denotes the

complexity of sector s that establishment j produces in. I use both measures of sector-level complexity for

the regressions.54

The identifying assumption is that establishments close to and farther away from new broadband back-

bones were on parallel trends in the outcome of interest prior to the completion of the new backbones, and did

not experience systematically different idiosyncratic shocks after the new backbones arrived. Figure 3 plots

the paths of the number of occupations within establishments in the treated and control groups before and

after the completion of backbone cable in 2012. This enables me to inspect how the gap between the treated

areas and control areas evolve after the new backbone cables arrive. More importantly, the plot allows me

to check whether the identifying assumption of parallel trends holds. Indeed, while the average number of

occupations within establishments is always the higher in the treated areas, shapes of the two graphs are

virtually identical. The two lines seem to diverge after 2011, suggesting an increase in division of labor after

the arrival of new broadband connections.55 In Table 25 of Appendix D, I formally test the parallel-trends

assumption by including two lead variables, which are two indicator functions taking the value of 1 in t− 2

and t − 1, respectively, if an establishment receives the treatment in t, and 0 otherwise. Coefficients on the

lead variables are negative and insignificant, which supports the assumption of parallel trends.
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Figure 3: Log number of occs in treated versus control groups in Brazil
Dotted lines represent the 95% confidence bands.

Additionally, Figure 2, which shows the new broadband backbones that had been introduced at various

times during the data period, illustrates three important aspects of the identifying variation I exploit. First,
54I also include a specification with both interaction terms incorporated in a single regression. The specification and corre-

sponding results are shown in Appendix D.
55Figure 16 in Appendix D shows the pre-trend graph for the specialization index. The two figures are very similar qualitatively.
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the new backbones were completed throughout the period I consider and were connected to different mu-

nicipalities in time. This means that my DiD approach is dynamic in that I compare establishments in the

treated and control groups across many points in time rather than on a single date. Second, alignment of the

backbones was announced in 2010 and followed other infrastructures that had existed long before 2010, mak-

ing it harder for policymakers to align the broadband cables in anticipation of economic changes in certain

areas. Third, the order in which municipalities are connected is approximately geographically determined,

according to their distances to the submarine cable landing points along the coast, as illustrated in Figure 2.

It is thus a priori unlikely that the availability of the new backbones across different municipalities correlates

with the temporal variation in the extents of firms’ division of labor of areas on and off the new backbone

cables in Brazil.

7.4 Results

Table 2 reports the main findings: the estimated effects of new ICT infrastructure on establishment-level

variables. Panel A shows from the baseline regression. Column (1) shows that establishments receiving fast

internet access increase their number of occupations by 1.36 percentage point relative to other areas, whereas

Column (3) shows that the specialization indices within these establishments increase by 0.09.

Next, I move on to the results that investigate the heterogeneous effects of the ICT shock. Columns (2)

and (6) show the results for (35). Consistent with model predictions, the impacts of new ICT infrastructure

are significantly greater for establishments located in larger cities. The estimated heterogeneity is substantial.

A 1 percent increase in city size increases the estimated effects of new broadband connection by 0.8 percentage

point and 0.01 when division of labor is measured by the number of occupation codes and the specialization

index, respectively. Finally, columns (3), (4), (7), and (8) illustrate results for (36). Again, consistent with

the model prediction, the impacts of new ICT infrastructure are greater for establishments that produce in

more complex sectors.

Before moving on, it is worth highlighting that the estimate of the treatment effect captures not just

the direct effect of ICT on firm’s division of labor, but also any potential indirect effect of this ICT shock

on division of labor through other channels. When this happens, the total effect I estimate may differ

from the theoretically defined partial effect of the model. However, as long as division of labor increases in

response to the ICT shock, the theoretical predictions on the heterogeneities of the treatment effects still

hold. Therefore, the discrepancy in the interpretations for the direct treatment effect does not undermine

the objective of model validation. Furthermore, the quantitative evaluation of the model using the quasi-

experiment targets the total effect in calibrating the magnitude of the shock. I discuss this in more detail in

Section 7.5.
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Alternative interpretations

I discuss two alternative interpretations of the results and describe the tests in place to ensure the validity

of my interpretation. First, when the new broadband connection is introduced, establishments that adopt

the new technology may need to hire new employees to work on IT-related jobs. If these occupations did not

exist within the establishment before, this would lead to a mechanical increase in the number of occupations

without changing division of labor within the establishment. To address this problem, I remove all IT-related

occupations from the analysis, and re-estimate (34), (35), and (36).56 As shown in Panel B of Table 2, results

are both qualitatively and quantitatively similar to the baseline results.

Second, faster internet may change the boundary of an establishment. If this happens, the increase in

the number of occupation codes within an establishment would reflect an expansion of its boundary—for

example, addition of a new department or product—instead of a greater extent of division of labor. Since

I do not have the data for establishment-level product varieties or outsourcing decisions, I cannot test the

alternative mechanisms directly. However, existing literature shows that modern communication technology

is typically associated with a shrinkage in the establishment’s boundary.57 To the extent that this is true,

my estimate presents a lower bound of the true effect of broadband connectivity on division of labor. I also

derive a test to assess the possibility of changes in the establishment’s boundary. To do so, I remove all

occupation codes belonging to occupation categories that did not exist before the policy and re-estimate (34)

to (36).58 As shown in Panel C of Table 2, results are again similar to baseline results.

Robustness checks

I perform a comprehensive set of robustness tests. I show that my results are robust to varying the radius

around the backbone network used to define connectivity status; to separating high and low-skilled occupa-

tions; to including only mono-establishment firms; to only including eventually-treated areas; to excluding

municipalities very near or far from the backbone network from the sample; to excluding terminal locations

along the new backbones; to excluding locations very close to submarine cable landing points; to excluding

establishments already connected to the broadband network before PNBL; to excluding establishments lo-

cated in rural areas or in very large cities; to removing firms in export-intensive sectors; and to controlling

for location-specific linear trends in the outcomes. I also show that the p-values of the estimates are similar

if I use a nonparametric permutation test for inferences. A detailed discussion of the robustness tests and

results can be found in Appendix D.3.

56IT-related occupations correspond to CBO codes 212205, 212210, 212215, 212305, 212310, 212315,
212320, 212405, 212410, 212420, 313220, 313305, 313310, 313320, 317205 and 317210. See
http://www.mtecbo.gov.br/cbosite/pages/pesquisas/BuscaPorCodigo.jsf for more details on occupation codes.

57For example, Fort (2017) finds that communication technology lowers coordination costs, leading to more firm outsourcing
or fragmentation.

58An occupation category is defined by the 3-digit CBO code. The assumption for this test is that addition or removal of
occupation categories corresponds to changes in the boundary of an establishment.
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In the empirical exercise, I focus on the total effect of the new broadband connection on firms’ division

of labor, without specifying the channels through which the faster internet can affect worker specialization

within firms. Through my interactions with Brazilian establishments, the biggest changes after the advent

of faster internet are two folds: (1) easier sharing of work output; and (2) easier monitoring of workers.

With faster internet, file-sharing software like Dropbox and Github is now feasible to be implemented within-

establishments. At the same time, managers can now better monitor and dedicate tasks to workers, often

aided by HR software like SAP. Based on the anecdotal evidence, I hypothesize that broadband internet

facilitates worker specialization through reduction in within-establishment coordination costs. To test this

hypothesis, I present a supplementary test, which investigates changes in the share of managers within

establishments. Managers play a coordinating role within an organization. Studies of the internal organization

of firms confirm that a reduction in coordination costs within a firm would lead to greater centralization in

the management structure—i.e., the share of managers would go down (see, e.g., Bloom et al., 2014 and

McElheran, 2014). In Appendix D.4, I show that an improvement in internet connectivity reduces the share

of managers within establishments, consistent with a reduction in coordination frictions.59

In sum, it appears that firms underwent organizational changes in response to improvements in ICT

infrastructure. Workers become more specialized in areas that are now connected to fast internet, indicating

that there is complementarity between division of labor and better ICT infrastructure in firms’ production

function. Additionally, the increases are higher for more complex firms and for firms in bigger cities, which

are consistent model assumptions that there are complementarities between firms’ division of labor and

complexity, and between firms’ division of labor and city size. These empirical results validate the qualitative

theoretical predictions. In the following section, I use the reduced-form estimates to evaluate the quantitative

predictions of the model.

7.5 External validation to the structural estimates

In addition to providing empirical support to the key model assumptions, I also use the quasi-experiment to

provide out-of-sample validation to the estimated model. Since the model is estimated without using data

after the implementation of new ICT infrastructure, I am able to compare the model-based predicted impact

to the actual changes.60

I first compute the direct effect of the new infrastructure on division of labor, using the reduced-form

analysis in Section 7.4. The new broadband infrastructure increases division of labor within firms in the

treated areas by 1.36% more than the control areas. With the estimated model, I calibrate the magnitude of

the productivity impact in treated cities in response to the broadband rollout to match the estimated average
59Interestingly, as shown in Appendix D.4, the skill intensity within firms increased following the new broadband connection.
60While I do not use the quasi-experiment in the structural estimation directly, I rely on it to assess the reliability of the

structural estimates. This is a commonly adopted approach in the literature, see, e.g., Todd and Wolpin (2006).
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treatment effect on firms’ division of labor, yielding a 3.9% productivity increase. I then feed the productivity

shock to the simulated economy, assuming firms do not relocate spatially. Finally, I calculate the average

city-level change in firms’ division of labor based on the predicted distribution of firms and sectors within a

city. In the model, cities populated by more high-z firms would undergo a higher average city-level increase

in firms’ division of labor due to the heterogeneity of the treatment across different complexities.

(a) Actual
(b) Predicted

Figure 4: Actual v.s. Simulated changes in firms’ division of labor across cities

Even though I do not use post-program data in my estimation, the correlation between the average change

in firms’ division of labor within different cities predicted by the model and those in the data is high, at

0.69.61 Looking at Figure 4, one can see that the model accurately predicts that areas undergoing the highest

increase are concentrated in the South, and that the increases tend to be smaller in the northern parts of the

country.

In my judgment, the results above, together with the two non-targeted moments in Section 5.5, provide

enough confidence in the model to use it to perform policy evaluations. In Appendix E, I illustrate how

one could do so, by using the estimated model to evaluate the short-run and long-run impacts of the new

broadband infrastructure on productivity and other outcomes in Brazil.
61The benchmark correlation is 0.28, which is obtained by assuming a uniform distribution of firms and sectors across all

cities.
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8 Conclusion

In this paper, I show that division of labor is an important contributing factor for the productivity advantage

in larger cities. Using the unique data that measures division of labor at the firm level, I document a new

empirical fact that firms adopt greater division of labor in larger cities. To explain this, I build a parsimonious

model embedding firms’ choices of the optimal division of labor into a spatial equilibrium framework, and

propose mechanisms that generate the positive correlation between firms’ division of labor and city size in

equilibrium. Firms’ optimal choices of division of labor drive sorting of firms across cities. This spatial

sorting shapes the spatial distributions of division of labor and productivity jointly. The structure of the

model, combined with the detailed observables in the data, allows me to estimate the contribution of division

of labor to productivity advantage in larger cities, and to separately identify the relative contributions of the

different channels proposed in the model. Finally, through a quasi-experiment, I provide causal empirical

evidence that supports a set of auxiliary theoretical predictions and validates the structural estimates.

This project is a step toward further unpacking the black box of agglomeration externalities. Identifying

and quantitatively evaluating the source of agglomeration externalities is important not only for our under-

standing of the regional productivity differences, but also matters for understanding aggregate productivity,

which depends on the spatial distribution of firms and workers. The evidence on both the relationship be-

tween firms’ division of labor and city size, and the underlying mechanisms driving this relationship has

direct policy implications. In the quasi-experiment, the ICT infrastructure that improves coordination effi-

ciency within the firm may be an effective way of increasing labor productivity by enabling workers to be

more specialized. Future works should evaluate the impact of other policy interventions related to reducing

coordination costs, matching frictions, or learning and training costs associated with worker specialization.
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A Data and stylized facts

A.1 Construction of measures for division of labor

In the data exercise, I measure division of labor by the heterogeneity of occupations that are involved in
the actual production within an establishment. The baseline definition for division is labor is the number of
non-managerial/supervisory occupations codes within an establishment. As an alternative definition, I also
consider a normalized measure of the diversity of the occupation codes.

I construct the two measures by first removing occupation codes that are related to managerial or super-
visory functions within an establishment.62 My goal is to identify, out of the 2,544 6-digit CBO codes, the
ones that most likely involve managerial or supervisory tasks, from the occupation descriptions.63 To imple-
ment this in a principled manner, I leverage the Latent Dirichlet Allocation (LDA) method (Blei, Ng and
Jordan, 2003), a widely-used topic modeling technique in machine learning, to infer a collection of “topics” or
“themes” from the occupation descriptions. Using LDA, I first learn a list of “topics” across all code descrip-
tions, where each “topic” can be represented with a collection of keywords. Next, I identify all “topics” that
contain words that are derivatives of “manage” and “supervise.” Finally, with each occupation code along
with its description associated with as a mixture of underlying “topics,” I remove all occupation codes that
have a more than 50% distribution of identified “topics” related to “manage” and “supervise.”64 This leaves,
in total, 1821 occupation codes in the dataset across all establishments.65 For simplicity of exposition, I drop
the adjectives and refer to these non-managerial/supervisory occupations as occupations henceforth.

For the alternative measure, I account for the difference in distribution of workers across occupations.
To do so, I construct a “specialization index,” which is defined as one minus the Herfindahl index across
occupations within an establishment. Formally, let o represent an occupation at the 6-digit CBO level, the
specialization index for establishment j with the set of occupation codes O is calculated as:

Nj = 1−
O∑
o=1

(
lj(o)
lj

)2
,

where lj(o) and lj denote the number of workers employed in occupation o and the total number of workers
in establishment j, respectively. Large values of Nj indicate higher degree of division of labor.

62The purpose of this step is to identify occupations that are directly involved in the production process, so that the empirical
measure is more consistent with the theory.

63The complete CBO 6-digit codes and the corresponding descriptions can be downloaded from the Brazilian Ministry of
Labor website: http://www.mtecbo.gov.br/cbosite/pages/pesquisas/BuscaPorCodigo.jsf.

64See Figure 5 for an illustration of the procedure.
65As a robustness check, I follow Caliendo, Monte and Rossi-Hansberg (2015) and separate the employees within an establish-

ment into four vertical hierarchical layers, based on their level of authority. I then remove all occupations codes at the top three
layers (which correspond to firm owners, senior management and supervisors, respectively), and only consider the occupation
codes at the bottom layer. All results are robust to this alternative construction.
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Stage 1: Preprocessing / Translation

Stage 2: Inference of Topic Distribution by LDA

CBO codes

…
7113-05
8311-15
9501-10
...

Occupation descriptions

… manage teams, goals and results
of maintenance of electronic, and 
industrial buildings … elaborate 
plans and control processes for ...

Occupation 
descriptions

… 
…
… 

Topic distribution
(for each occupation)

topic 
1

topic 
2

topic 
3

topic 
4

Word distribution
(for each topic)

Topic 1
 command 0.3
 plan 0.09
 manage 0.06
 ...

Topic 4
 record 0.2
 assemble 0.1
 install 0.05
 ...

…

Figure 5: Removing managerial / supervisory occupations using the LDA technique

A.2 Additional results for stylized facts

First, I consider the possibility that establishments in larger cities are better at recording their employee’s
occupations accurately. To address this concern, I study the correlation between division of labor and city
size, in which division of labor is measured at 4-digit occupation code level, instead of 6 digit. As shown in
Tables 3 and 4, though lower in the values of the estimates, the positive correlations remain qualitatively
consistent and quantitatively similar to the baseline results.

Dependent variable Log no of occs Specialization index
All Mono-estb Homog All Mono-estb Homog

(1) (2) (3) (4) (5) (6) (7) (8)
Log (city size) .055*** .024*** .0233*** .0281*** .0187*** .0137*** .0133*** .0144***

(.0019) (.001) (.001) (.0102) (.0006) (.0005) (.0005) (.0048)
Other controls No Yes Yes Yes No Yes Yes Yes
Obs 2960066 2960066 2776735 6111 2960066 2960066 2776735 6111
R-sq .119 .855 .852 .906 .081 .515 .518 .552

Standard errors clustered by city in parentheses. Significance levels: * 10%, ** 5%, ***1%. All regressions include sector
and year FEs. Specialization index is defined in (3). Establishment-level controls are establishment size, skill intensity, and
occupation categories (defined as the number of 3 digit occupation codes) within the establishment. City-level controls are
state dummy, Herfindahl index of employment across sectors within the city, and the size of local sectoral employment.
Occupations are measured by 6-digit Brazilian CBO codes. Sectors are measured by 5-digit Brazilian CNAE codes.
Mono-estb firms refers to firms with a single establishments. Homogeneous sectors include corrugated and solid fiber
boxes, bread, carbon black, roasted coffee beans, ready-mixed concrete, wooden flooring, gasoline, ice, plywood, and sugar
(Foster, Haltiwanger and Syverson, 2008).

Table 3: Correlation of establishment’s division of labor (measured at 4-digit level) and city size

I further divide establishments into deciles and study the correlation between firms’ division of labor and

48



Dependent variable Log no of occs Specialization index
All Mono-estb Homog All Mono-estb Homog

(1) (2) (3) (4) (5) (6) (7) (8)
Log (city size) .0533*** .0236*** .0229*** .026** .0192*** .0137*** .0131*** .0142***

(.0018) (.0009) (.0009) (.0102) (.001) (.0005) (.0005) (.0047)
Other controls No Yes Yes Yes No Yes Yes Yes
Obs 2960045 2960045 2776714 6111 2960066 2960066 2776735 6111
R-sq .132 .841 .837 .887 .111 .498 .499 .55

Standard errors clustered by city in parentheses. Significance levels: * 10%, ** 5%, ***1%. All regressions include sector
and year FEs. Specialization index is defined in (3). Establishment-level controls are establishment size, skill intensity, and
occupation categories (defined as the number of 3 digit occupation codes) within the establishment. City-level controls are
state dummy, Herfindahl index of employment across sectors within the city, and the size of local sectoral employment.
Occupations are measured by 6-digit Brazilian CBO codes. Sectors are measured by 5-digit Brazilian CNAE codes.
Mono-estb firms refers to firms with a single establishments. Homogeneous sectors include corrugated and solid fiber
boxes, bread, carbon black, roasted coffee beans, ready-mixed concrete, wooden flooring, gasoline, ice, plywood, and sugar
(Foster, Haltiwanger and Syverson, 2008).

Table 4: Correlation of establishment’s division of labor (measured at 3-digit level) and city size

city size across different groups. This would partially address the problem of not observing informal workers
within establishments. Based on ECINF (the Urban Informal Economy Survey), the share of informal workers
is negatively correlated with firm size. As shown in Table 5, the correlation remains positive for all deciles,
suggesting that the result is unlikely driven by differences in informal employment across space.

Dependent variable
Log (no of occupations) Specialization index

1st decile .0011 6th decile .0071*** 1st decile 0 6th decile .0047***
(.0007) (.0009) (0) (.0005)

2nd decile .0022*** 7th decile .008*** 2nd decile .0012*** 7th decile .005***
(.0005) (.0011) (.0003) (.0006)

3rd decile .0049*** 8th decile .0093*** 3rd decile .0033*** 8th decile .0055***
(.0006) (.0012) (.0005) (.0006)

4th decile .006*** 9th decile .0096*** 4th decile .0043*** 9th decile .006***
(.0007) (.0012) (.0005) (.0007)

5th decile .0056*** 10th decile .0177*** 5th decile .004*** 10th decile .011***
(.0009) (.0014) (.0005) (.0008)

Specialization index is defined in (3). All regressions include sector, state and year FEs. Establishment-level control is the
skill intensity within the establishment. City-level controls are state dummy, Herfindahl index of employment across
sectors within the city, and the size of local sectoral employment. Occupations are measured by 6-digit Brazilian CBO
codes. Sectors are measured by 5-digit Brazilian CNAE codes.

Table 5: Correlation of the establishment’s division of labor and city size, by decile

Next, Table 6 shows the results from multi-establishment firms, using the following specification:

logNjt = α0 + α1 logLm(j)t + δf(j) + δs(j) + δt + Xjt + εjt,

where δf(j) is a firm fixed effect. Effectively, this specification allows me to study variation in extents
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of division of labor across establishments in different cities within the same firm. Again, the results are
consistent with the baseline results in which there is strong positive correlation between division of labor and
city size.

Dependent variable Log no of occs Specialization index
(1) (2) (3) (4)

Log (city size) .0148*** .0315*** .0094*** .0157***
(.005) (.0024) (.0011) (.001)

Other controls No Yes No Yes
Obs 172088 172088 172088 172088
R-sq .562 .932 .461 .683

Standard errors clustered by city in parentheses. Significance levels: * 10%, ** 5%, ***1%. All regressions include firm,
year and sector FEs. Specialization index is defined in (3). Establishment-level controls are establishment size, skill
intensity, and occupation categories (defined as the number of 3 digit occupation codes) within the establishment.
City-level controls are state dummy, Herfindahl index of employment across sectors within the city, and the size of local
sectoral employment. Occupations are measured by 6-digit Brazilian CBO codes. Sectors are measured by 5-digit Brazilian
CNAE codes.

Table 6: Correlation of division of labor and city size across establishments in multi-establishment firms

Dependent variable Log no of occs Specialization index
(1) (2) (3) (4)

Log (city size) .0488*** .0253*** .0171*** .014***
(.0025) (.0017) (.001) (.0007)

Log (city size) x Fragmentation Intensity .0272 0 .0053 -.0008
(.037) (.002) (.013) (.0008)

Other controls No Yes No Yes
Obs 2960066 2960066 2960066 2960066
R-sq .117 .86 .078 .526

Standard errors clustered by city in parentheses. Significance levels: * 10%, ** 5%, ***1%. All regressions include sector
and year FEs. Specialization index is defined in (3). Establishment-level controls are establishment size, skill intensity, and
occupation categories (defined as the number of 3 digit occupation codes) within the establishment. City-level controls are
state dummy, Herfindahl index of employment across sectors within the city, and the size of local sectoral employment.
Occupations are measured by 6-digit Brazilian CBO codes. Sectors are measured by 5-digit Brazilian CNAE codes.
Fragmentation intensity is calculated using the share of fragmentation by 4-digit NAICS code from Fort (2017).

Table 7: Fragmentation intensity and correlation of division of labor and city size

Finally, I address concerns for variation in establishment boundaries through the following robustness
check. Relying on the fragmentation index documented in Fort (2017), I categorize establishment into two
groups based on their tendency to fragment their production process and/or outsource certain tasks to other
firms (both domestically and internationally). I then run the following analysis:

logNjt = α0 + α1 logLm(j)t1(Fragment) + δs(j) + δt + Xjt + εjt,

where 1(Fragment) is dummy taking the value of 1 if the establishment falls in a 4-digit CNAE industry with
a fragmentation index higher than the median measure of all industries. As shown in Table 7, establishments
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that are more likely to fragment do not have a significantly different correlation with city size relative to those
that are less likely to fragment. This suggests that systematic variations in firm boundaries across cities are
unlikely to drive the observed correlation.

B Theory Appendix

B.1 Microfounding urban costs

In this section, I provide a microfoundation for the reduced-form urban costs in (6) by modelling cities in a
standard Alonso-Muth-Mills monocentric city framework.66

Production within each city takes place at a single point, called the central business district (CBD).
Residential developments are aligned around the CBD, with length normalized to 1. Workers commute to
the CBD at a cost, which are paid in worker’s reference level of wages, w̄.67 The costly commute reflects
opportunity cost of time. I further assume that the cost of a round trip from any location at a distance x
from the CBD is:

c(x) = τxη, τ > 0 and η ≥ 0.

Within each city, workers choose their locations of residence to maximize utility given income and rent
schedule. For simplicity, I assume that the rent is taxed and redistributed equally to all the residents within
that city. Because each worker consumes a fixed amount of housing, worker’s problem is effectively to choose
a location x to minimize the combined cost of housing and commuting, i.e., r(x)+c(x). Further, no arbitrage
condition ensures that r(x) + c(x) is the same for all residents in equilibrium.

With all these, the objective function can therefore be written as follows,

r(x) + c(x) = r(x) + τxη = r

(
L

2

)
+ τ

(
L

2

)η
, (37)

where L is the total population in the city. Since the city is symmetric at CBD, the distance to the edge of
the city is L/2. The second equality equates the combined urban cost for workers living at a distance x to
the CBD to others living on the edge of the city.

Without loss, I normalize the rent at the edge of the city to 0. Substituting this to (37), I obtain the rent
schedule within city L,

r(x) = τ

(
L

2

)η
− τxη.

Integrating the rent schedule over the entire city yields total land rent:

R(L) =
∫ L

0
r(x)dx = 2

∫ L/2

0
r(x) dx = 2τη

η + 1

(
L

2

)η+1
,

66See Behrens, Duranton and Robert-Nicoud (2014) for a more recent discussion.
67Recall that w̄ is treated as the numeraire in the model.
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where the second equality takes advantage of the fact that rent is symmetric around the CBD.
For a worker living at distance x from the CBD, urban costs are the sum of her rent and commuting costs

minus her share of the R(L). The amenity values of living in a city of size L, defined as the inverse of the
urban costs is therefore:

u(L) ≡ [c(x) + r(x)− R(L)
L

]−1 = 2ητ−1(η + 1)L−η. (38)

Setting κ ≡ 2ητ−1(η + 1), I obtain (6) in Section 4.

B.2 Definition of the spatial equilibrium

Homogeneous workers are indifferent across locations, while firms choose their locations optimally based
on their complexity draws. I choose the reference level of wages w̄ defined in (8) as the numeraire. An
equilibrium for a population L̄ and firm with product distribution f(z) in a set of locations L is characterized
by a set of prices {w(L)}; a city-size distribution fL(·); an optimal division of labor function N(z); a location
matching function L(z); an employment function l(z); a production function Q(z); and a set of price index
P and mass of firms M such that:

1. Workers maximize their utilities according to (4), given w(L), pH(L) and P .

2. Worker’s utility is equalized across all cities.

3. Firms maximize profits according to (15), given w(L) and P .

4. Aggregate production must be equal to the sum of individual firms’ production:

1 = (σ − 1)σ−1

σσ
MPσ−1

∫
z

(
ψ(N,L; z)

[(1− η)L(z)]
1−η
η

)σ−1

dF (z). (39)

5. Firms earn zero profits. Using the free-entry condition, the following condition must be met, for

fEP = (σ − 1)σ−1

σσ
RPσ−1

∫
z

(
ψ(N,L; z)

[(1− η)L(z)]
1−η
η

)σ−1

dF (z). (40)

6. The national labor market clears:

L̄ = (σ − 1)σ

σσ
MRPσ−1

∫
z

[ψ(N,L; z)]σ−1

[(1− η)L(z)]
1−η
η σ

dF (z). (41)

7. The local labor markets clear:∫ L

L0

nfL(n)dn = M

∫ ∞
0

1(L, z)l(z)dF (z) ∀L > L0, (42)
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where L0 ≡ inf(L), i.e., the smallest city size in equilibrium, and 1(z, L) = 1 if firm z is in city L, and
0 otherwise.

Finally, note that by Walras’ Law, the goods market clears.

B.3 Microfoundation for the complementarity between N and z

In Section 2, I follow Costinot (2009) and develop a stylized theory of firm production to guide the empirical
measure for division of labor. In this section, I show that the model also provides a microfounded production
function that generates log-supermodularities between division of labor N and firms’ complexity draw z.

From Lemma 1, we know that the optimal contract assigns 1
N tasks to each worker, with N denoting the

number of distinct occupations within the firm. Given that each task requires z units of training cost, the
total training cost per worker is therefore z

N .. This further implies that each worker has 1− z
N units of time

available for production. The worker productivity is therefore given by,

ψ(N, z) ≡ 1− z

N
. (43)

The result in (43) reflects the key argument of Rosen (1983). Worker productivity is maximized when N
is infinite, and every worker only learns an infinitesimal task. In other words, if there is no cost of division of
labor, efficiency requires that each skill be used as intensively as possible. Furthermore, it is straightforward
to see that using this production process, ψ(N, z) meets the condition specified in Assumption 1—ψ(N, z) is
log-supermodular in (z,N).

B.4 Microfoundation for the complementarity between N and L

In this part, I present two ways to microfound the complementarity between division of labor N and city size
L. The first one argues that larger cities provide better infrastructure—in particular, ICT infrastructure—
that reduces the costs of greater division of labor. The second focuses on the learning advantage in larger
cities. It is relatively cheaper for firms with greater division of labor to train their workers in larger cities.

B.4.1 Local infrastructure provision

I first focus on the ability for larger cities to provide better public infrastructure. This is one of the most classic
agglomeration externalities that justify the existence of cities (see Duranton and Puga, 2004, and Fujita and
Thisse, 2013 for a review). Following Henderson (1974), I assume there is a class of local land developers.
Land developers fully tax local landowners. They, in turn, invest the tax revenue in local infrastructure
to attract firms. Land developers also play a coordination role, setting up cities on potential sites where
they find profitable to do so, by announcing a city size L and a level of infrastructure investment, I. Their
revenues correspond to the profits made in the housing sector, i.e. R(L) = κ1

(
L
2
)η+1, where κ1 is a positive

constant. Due to competition and free entry, land developers that invest less than R(L) will not attract any
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firm to the city; whereas developers that invest more to attract firms will make negative profits. Therefore,
in equilibrium, the optimal level of investment in L is

I(L) ≡ R(L) = κ1

(
L

2

)η+1
, (44)

where I(·) denotes the optimal level of investment. Using (44), it can be readily seen that I(·) is an increasing
function of the city size, L.

Note that the result in (44) is stronger than the necessary condition to derive the positive correlation
between division of labor and city size, which only requires that the aggregate level of infrastructure be
greater in larger cities. However, under certain conditions, the provision of public infrastructure in (44) is
the socially optimal level.68

Next, I assume that there is complementarity between city infrastructure, I, and firms’ division of labor,
N . Better infrastructure, e.g., ICT infrastructure such as faster internet, improves communication within a
firm, making coordination among specialized workers more efficient. In Section 7, I provide causal empirical
evidence to support this assumption. Finally, since I is an increasing function of city size, L, the log-
supermodularity between I and N implies the log-supermodularity between L and N .

B.4.2 Alternative microfoundation for the complementarity between N and L

I present an alternative way to microfound the complementarity between firms’ division of labor N and city
size L. The main idea follows Marshall (2009), who argues that a larger market facilitates learning, perhaps
by providing better technologies or a better environment for knowledge sharing or idea exchange. This allows
workers to pursue a more specialized set of skills that reduce the cost of training.

Recall that in the stylized model in Section 2, I assume that all tasks in [0, 1] needs to be completed
within a firm to produce any good. In this part, I further assume that firms hire workers, whose productivity
depends on their level of human capital. Human capital of workers has two dimensions, intensive human
capital b and extensive human capital K = 1

N .69 K is a measure of the breadth of a worker’s skills, and b
represents the depth of a worker’s skills, which can be interpreted as the efficiency units supplied by a worker.
Following Caliendo and Rossi-Hansberg (2012), I assume that the cost of acquiring human capital, γw(L), is
proportional to the wage in the city, since learning requires teachers in the schooling sector who earn w(L).
Learning thus requires γ units of a teacher’s time at wage w(L). Since workers are ex ante identical, in
equilibrium, the additional pay to workers over w(L) must equal the learning costs. The total wage that

68This is argued in Henry George Theorem (Arnott and Stiglitz, 1979), which claims that public expenditure on non-rival
public infrastructure equals aggregate land rent when the population size of a city is optimal. Alternatively, the same outcome
can be achieved using voting as an alternative decision-making mechanism to determine the location and the level of local public
infrastructure. Given individual mobility within the city and competitive housing land prices, the optimal level of infrastructure
provision I(L) is unanimously selected by consumers through voting if the local government implements a housing tax equivalent
to housing rent. See Fujita and Thisse (2013) for details.

69This assumption states that the more specialized workers are (i.e., larger N), the lower the level of extensive human capital.
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workers receive from the firm is thus given by:

worker wage = (1 + γ)w(L).

Following conventional literature (see, e.g., Kim, 1989), I assume that the cost of acquiring human capital
is convex in both intensive and extensive human capital. Formally,

γb > 0, γK > 0,

γbb > 0, γKK ≥ 0, γbK > 0,

where the subscripts refer to partial derivatives.70

The cost of knowledge acquisition also depends on the city-wide availability of intensive and extensive
human capital, denoted by b(L) and K(L), respectively.71 Importantly, b(L) is defined by the aggregate
volume of intensive human capital available in city L, and K(L) is defined by the superset of the collection
of extensive knowledge sets for all workers in the city. Formally,

b(L) =
∫
i∈L

b(i) di; K(L) = sup{K(i)}i∈L,

where i denotes a worker living in city L.
To produce any good, all tasks must be completed. Therefore, the set of extensive human capital available,

K(L), is the same everywhere, denoted by K̄. In other words, the marginal cost of pursuing extensive
knowledge is unrelated to city size, i.e., γKL = 0.

On the other hand, the aggregate level of intensive human capital, b(L), is increasing in city size. In
other words, all else equal, larger cities have a comparative advantage in pursuing intensive knowledge,72

γbL < γKL = 0.

With no search friction or information asymmetry in the model, I can combine the choice of human
capital acquisition as part of the firm’s problem, i.e. firms choose both N and b to maximize profits, given
the learning costs γ associated with its choice of (N, b). The firms’ production function is given by

Q = A(N, z)bl, (45)
70The first set of assumptions says that the cost of acquiring human capital is an increasing function of the level of both

intensive and extensive human capital. The second set of assumptions says that the marginal costs are also increasing functions.
71The assumption builds on the idea that learning, in general, is more efficient when there is more knowledge available in

the local labor market. See Davis and Dingel (2020) for theoretical discussion and De la Roca and Puga (2017) for empirical
evidence on this assumption.

72The case for multiple sectors is slightly more complicated. In that case, it is possible that larger cities consist of firms
producing in multiple sectors. Hence, K(L) may also vary by city size. However, so long as the elasticity of K(L) with respect
to L is smaller than that of b(L)—which can be proved true under regularity conditions—we still get back the same results.
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where A(N, z) denotes worker productivity and b denotes the level of intensive human capital that a worker
hired in z has.

The firm’s problem is therefore

max
N,b,L

π(z, L,N, b) = max
N,b,L

κ2

(
A(N, z)b

(1 + γ(N, b, L))w(L)

)σ−1
RPσ−1, (46)

where κ2 is a positive constant.
It is straightforward to prove that the profit function is log-supermodular in (N, b, z, L). Using the classic

theorem of monotone comparative statics in Topkis (1978), if the firm chooses b optimally, given (N, z, L),
the resulting profit function would be log-supermodular in (N, z, L), and in (N , L). The intuition is simple.
Given γbK > 0, I have γbN < 0—i.e., the marginal cost of acquiring intensive human capital b for firms with
greater division of labor is lower. Given, γbL < 0, the marginal cost of acquiring intensive knowledge is lower
in larger cities. Combining these two assumptions, when b is optimally chosen, firms with higher N benefit
more from being in larger cites due to the lower learning costs there, leading to the complementarity between
N and L in the profit function. I can, therefore, define ψ(·) in (9) as:

ψ(N,L; z) ≡ A(N, z)b
1 + γ(N, b, L) .

When b is optimally chosen, ψ(N,L; z) displays log-supermodularity in (N,L).

B.5 Proofs

This section presents the proofs to the propositions and lemmas discussed in the main text.

Lemma 1

Proof. I will prove the first part of the lemma by contradiction. Suppose C∗ assigns a positive mass of
workers m ∈ l to multiple occupations.

Since the total number of occupations N is finite, there exists l′ ⊂ l with positive mass such that all
m ∈ l′ perform the same set of occupations O′ = {O∗kh}

H
h=1, where H is the total number of occupations for

which these m workers perform.
Let lkh denote total amount of labor that workers m ∈ l′ allocate to performing J ∗kh ∈ O

′ under C∗.
Adding the workers’ time constraints, we get:

lkh ≤
∫
m∈l′

α(m, kh) [1− zc′] du (47)

where α(m, kh) is the share of after-training labor that worker m allocates to O∗kh ; and c
′ is the total number

of tasks in O′. By assumption, c′ < c∗kh , the number of tasks in O∗kh .
Now consider a contract C̃ that reallocates workers m ∈ l′ across jobs according to the following rule:
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1. For all O∗kh ∈ O
′, C̃ assigns a mass

∫
m∈l′ α(m, lh)du− ε of workers exclusively to O∗kh .

2. The remaining Hε > 0 of workers are not hired by the firm.

Each group of specialists can now allocate l̃kh units of labor to O∗kh , where l̃kh is given by:

l̃kh =
∫
m∈H

α(m, kh)(1− zc∗k)du− ε(1− zc∗k) (48)

For ε small enough, (47), (48) and c′ > c∗kh imply l̃kh > lkh . As a result, any unit that can be produced
under C∗ can also be produced under C̃, but that the total wage bill is smaller by wHε > 0, where w is the
equilibrium wage. A contradiction that C∗ being a solution of the profit maximization problem.

To prove the second part of the lemma, consider 2 occupations, O1 ∈ O∗ and O2 ∈ O∗. Assume that c1
and c2 are the number of tasks associated with O1 and O2, and M1 and M2 are mass of workers assigned to
these two jobs. Total amount of labor available for performing each job isM1(1−zc1) andM2(1−zc2). Note
that if the firm maximizes its profits, then all occupations must be performed on the same number of units
Q. Otherwise, the firm could decrease the mass of workers performing one job, without decreasing output.
This implies

M1

(
1− zc1
c1

)
= M2

(
1− zc2
c2

)
= Q

Now consider the following minimization problem:

min
c1,c2,M1,M2

M1 +M2

subject to
M1(1− zc1) = c1Q

M2(1− zc2) = c2Q

c1 + c2 = c̄

where c̄ is the total number of tasks in O1 ∪ O2. After plugging the first 2 constraints into the objective
function, wet

min
c1,c2

Q ·
(

c1
1− zc1

+ c2
1− zc2

)
subject to

c1 + c2 = c̄

The two necessary first-order conditions are given by:

Q

(1− zc1)2 = θ
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and
Q

(1− zc2)2 = θ

where θ is the Langrangian multiplier associated with c1 + c2 = c̄. Combining these two FOCs with the last
constraint, we get

c1 = c2 = c̄

2 .

This implies that, holding Q constant, the mass of workers necessary perform the c̄ tasks in O1 ∪ O2 is
minimized when O1 and O2 include the same number of tasks.

In order to conclude the proof, we note that if profits are maximized, then holding the level of the output
Q constant, the mass of workers must be minimized. So, if O∗ is a solution of the profit maximization
problem, then for any pair of occupations {O1, O2} ⊂ O∗, O1 and O2 must include the same number of tasks.
Since the total number of tasks that must be performed is c, we obtain,∫

t∈O∗
k

dt = zc

N
.

Lemma 2

Proof. Taking log of (13),

log π(N,L; z) = constant+ (σ − 1) [logψ(N,L; z)− logw(L)]

Taking partial derivatives with respect to its arguments, I get

∂ log π
∂z

= (σ − 1)∂ logψ
∂z

;

∂ log π
∂L

= (σ − 1)
[
∂ logψ
∂L

− ∂ logw(L)
∂L

]
;

∂ log π
∂N

= (σ − 1)∂ logψ
∂N

.

To prove supermodularity, cross-partials of log π(N,L; z) must be non-negative:

∂2 log π
∂z∂L

≥ 0;

∂2 log π
∂z∂N

= (σ − 1)∂
2 logψ
∂N∂z

> 0.

∂2 log π
∂N∂L

= (σ − 1)∂
2 logψ
∂N∂L

> 0;
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The last two inequalities come from Assumption 1.

Lemma 3

Proof. Using the result from Lemma 2, applying the implicit function theorem to the first-order condition,
∂ logπ(N,L;z)

∂N = 0, and invoking the second-order condition, ∂
2 logπ(N,L;z)

∂N2 < 0, I get

∂N

∂z
= −∂

2 log π/∂N∂z
∂2 log π/∂N2 > 0

∂N

∂L
= −∂

2 log π/∂N∂L
∂2 log π/∂N2 > 0

Lemma 4

Proof. By Proposition 4.3 of Topkis (1978), I can invoke the property that supermodularity continues to
hold when some arguments of a function are chosen optimally. That is, if π(N,L; z) is log-supermodular in
(z, L,N), then log π(L; z) ≡ maxN log π(N,L; z) is supermodular in (z, L).

Proposition 5

Proof. By Lemma 4, log π(z, L) is supermodular in (z, L).
It then follows that for all z1 > z2 and L1 > L2,

π(L1; z1)
π(L2; z1) >

π(L1; z2)
π(L2; z2) .

In another word, if z2 has higher profits in L1 than in L2, so does z1. Necessarily,

L∗(z1) > L∗(z2).

Under technical assumptions, L∗(z) is a strictly increasing function. Since the set of z is convex and
ψ(L,N ; z) is such that the profit maximization problem is concave for all firms, the optimal set of city sizes is
itself convex. It follows that L∗(z) is invertible. It is also locally differentiable (using the fact that ψ(L,N ; z)
is differentiable). The implicit function theorem applies, and I have

dL∗(z)
dz

= −
(σ − 1)∂

2 logψ
∂z∂N

∂N
∂L

∂2 logπ
∂z2

> 0.
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Proposition 6

Proof. L(z) is strictly increasing in z (from Proposition 5). Therefore, if L(z) = L(z′), then we know z > z′.
For simplicity, I denote L(z) and L(z′) by L and L′, respectively.

From Lemma 3, N(z, L) is increasing in z and L. I get N(z, L′) > N(z′, L′). And since L > L′, I get
N(z) > N(z′). For simplicity, I denote N(z) and N(z′) by N and N ′, respectively.

Profit is proportional to ψ(N(z, L); z). Under the assumption that ∂ψ(N,z)
∂z > 0, i.e. firm profit is

increasing in z, we have

ψ(N ′; z) > ψ(N ′; z′)

=⇒ π(N ′, L′; z) > π(N ′, L′; z′)

where the last inequality comes from the fact that firms face the same wage in the same city.
Finally, π(N,L; z) > π(N ′, L′; z′) as N and L are the profit maximizing choices for z. Therefore, I get

π(z) > π(z′). Since revenue is proportional to profits, I obtain r(z) > r(z′).
Lastly, wage is proportional to size of the city. Hence w(z) > w(z′), if L(z) > L(z′).

Proposition 8

Proposition 8 Consider an exogenous shock, ∂I, to firm’s division of labor, if c > 0 and θ > 0, then:

1. Within a city, the increase in division of labor is higher for more complex firms, i.e.,

∂2 logN
∂ log z ∂I > 0.

2. Across cities, the increase in division of labor is higher for firms in larger cities, i.e.,

∂2 logN
∂ logL∂I > 0.

Proof. From (33), change in logN caused by an infinitesimal exogenous shock ∂I can be written as:

∂ logN
∂I

= c
1

1−c (log z)
1

1−c (logL)
θ

1−c − 1 (49)

Consider the cross partial derivative of (49) with respect to z and L, respectively:

∂2 logN
∂I∂ log z = 1

1− cc
1

1−c (log z)
c

1−c (logL)
θ

1−c ,

and
∂2 logN
∂I∂ logL = θ

1− cc
1

1−c (log z)
1

1−c (logL)
θ−1+c

1−c .

60



It can be readily seen that if c > 0 and θ > 0, then ∂2 logN
∂I∂ log z > 0 and ∂2 logN

∂I∂ logL > 0.
The proof above shows that under the assumption in Section 5, there is heterogeneity in the impact of a

shock to division of labor: 1) the increase in division of labor is higher for more complex firms and 2) the
increase is also higher for firms in larger cities.

B.6 Model under costly trade

In this section, I prove that all theoretical results hold under costly trade assumption. My argument follows
the proof in Appendix C1 in Gaubert (2018) and uses results from Allen and Arkolakis (2014).

Following the assumption in the base model, the economy consists of a continuum of locations m ∈ M,
whereM is a compact subset of RM. Trade is costly: trade costs are of the iceberg form and are described
by the function T :M×M→ [1,∞), where τmn is the quantity of a good needed to be shipped from city m
in order for a unit of a good to arrive in city n. I discuss the single-sector results here, though all conclusions
can be simply extended to the multi-sector case.

Price index for goods produced in city m is given by:

Pm =
[∫

n

∫
z∈Z(n)

(
τnmwn
ψ(Ln; z)

)1−σ
dFn(z)dn

] 1
1−σ

,

where Z(n) is the set of firms located in city m in equilibrium and Fn(z) is the endogenous distribution of
firms in city n.

We can define an average city-level productivity term:

ψ̄n =
[∫

z∈Z(n)
ψ(Ln; z)σ−1dFn(z)

] 1
σ−1

. (50)

Using (50), price index can be re-written more compactly as:

Pm =
[∫

n

(
τnmwn

ψ̄n

)1−σ
dn

] 1
1−σ

. (51)

Given CES preference, demand for good z produced in n from city m is qmn(z) = pmn(z)−σwnLnPσ−1
n ,

whereas marginal cost for the good is τmnwm
ψ(Lm;z) . Combining, we get profit for firm z located in m,

π(z,m) = (σ − 1)σ−1

σσ

∫
n

(
τmnwm
ψ(Lm; z)

)1−σ
wnLnP

σ−1
n dn. (52)

Note that the market access for firms in m is given by:

MAm =
∫
n

τ1−σ
mn wnLnP

σ−1
n dn.
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Substituting into (52), we get,

π(z,m) = (σ − 1)σ−1

σσ
w1−σ
m ψ(Lm; z)σ−1MAm. (53)

It is straightforward to see that (53) displays log-supermodularity in (Lm, z). Therefore, in equilibrium,
there is positive assortative matching in (z, L), i.e., more complex firms sort into larger cities, choosing greater
extent of division of labor. As a results, firms in larger cities are also bigger and more productive. The final
step in this proof involves in showing that Lm is the sufficient statistic for city m, i.e., distance between two
cities plays no role in this economy. Note that since price index is a function of local wage and city size, we
need to show that there is a one-to-one mapping between city size and wage.

Given free mobility of workers, utility, Um =
[
wm
Pm

]
κL−ηm , must be equalized across all cities. Using (51)

and after some algebra, we can re-write the utility function as:

w1−σ
m L(1−σ)η

m = Ũ

∫
n

(
τnmwn

ψ̄n

)1−σ
dn, (54)

where Ũ = U1−σκσ−1, where U is the utility level in equilibrium.
Next, using local goods market clearing condition:

wmLm =
(

σ

σ − 1

)1−σ ∫
n

(
τmnwm

ψ̄m

)1−σ
wnLnP

σ−1
n dn.

Multiplying both sides by
(
wm
ψ̄m

)σ−1
and re-arranging, we get an expression for MAm,

wσmLmψ̄
1−σ
m =

(
σ

σ − 1

)1−σ ∫
n

τ1−σ
mn wnLnP

σ−1
n dn =

(
σ

σ − 1

)1−σ
MAm (55)

Further re-arranging, we have,

wσmLmψ̄
1−σ
m =

(
σ

σ − 1

)1−σ
Ū

∫
n

τ1−σ
mn wσnL

1−(σ−1)η
n dn (56)

The 2M equations of (54) and (56) fit directly into the systems of equations in Allen and Arkolakis (2014),
where the local congestion force is given by L−ηm and local productivity ψ̄m. Under further assumption that
the trade cost is symmetric, i.e., τmn = τnm, we can apply their results in Theorem 2, i.e. there exists unique
vectors Lm and wm in spatial equilibrium. Furthermore, we have

wσmLmψ̄m
1−σ = γw1−σ

m L(1−σ)η
m ,

where γ is an endogenous constant in equilibrium.
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Finally, from (55), we get MAm = γw1−σ
m L

(1−σ)η
m . We can therefore re-write firm’s profit function as

π(z,m) = (σ − 1)σ−1

σσ
γ

[
ψ(Lm; z)L−ηm

w2
m

]σ−1

(57)

In equilibrium, there must be a one-to-one mapping between city size and wage, i.e., no two cities with
the same size can have different wages. Suppose the opposite is true, the firm will only choose the city that
offers a lower wage. Furthermore, local wage has to be increasing in L, as firm profit is increasing in L and
decreasing in w.

B.7 Instability of a homogeneous equilibrium

Proposition 9 If agglomeration benefits are sufficiently strong relative to congestion costs, a homogeneous
equilibrium cannot coexist in a locally stable equilibrium

Proof. In a homogeneous equilibrium, all cities have the same size L and a symmetric distribution of firm
types. Consider two cities, L1 = L2. Without loss of generality, consider perturbations of size ε > 0 moving
workers from city 1 to city 2. Since π(L; z) is log-supermodular, the highest-z firms in city 1 have the most
gain from a move and it is sufficient to consider perturbations of size ε in which all firms in the range [z(ε),∞]
move from city 1 to city 2. Since an interval of the highest-complexity firms, accompanied by the appropriate
mass of workers in accordance to the firms’ labor demand, moves from city 1 to city 2, L′2 > L′1, with
L′2 = L2 + ε and L′1 = L1 − ε. The homogeneous equilibrium is only stable with respect to this perturbation
only if

log π(L2; z(ε))− log π(L1, z(ε)) ≤ 0

=⇒ logψ(N(z(ε), L2); z(ε))− logψ(N(z(ε), L1); z(ε))

≤ ηL1 − ηL2

This inequality is violated whenever z and the complementarity between N and z or between N and L is
sufficiently high relative to η.

B.8 Properties of the heterogeneous equilibrium

In heterogeneous equilibria, (18) characterizes the set of city sizes that necessarily exists in spatial equilibrium,
i.e. no firms or workers would be better off by deviating from the optimal choices of city sizes. While the
optimal city sizes are determined by the matching function, the density of different city sizes is obtained
through the local labor market conditions, i.e. population living in a city of size L must equate to the total
labor requirements from all firms that choose to locate in city L. Given that city-size is a continuous variable,
it is easy to consider the cumulative distribution function for the city-size distribution fL(·). Local labor
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market clearing condition dictates that, for all L > L0 (where L0 = inf(L), denoting the smallest city size in
the equilibrium) ∫ L

L0

nfL(n)dn = M

∫ z(L)

z(L0)
l(z)dF (z). (58)

I can then obtain the city-size distribution fL(·) by differentiating (58) with respect to city size L and dividing
by L on both sizes,

fL(L) = 1
L

[
M 1(L) l(z(L)) f(z(L)) dz(L)

dL

]
, (59)

where 1(L) is an indicator function, taking the value of 1 if firm is in city L and 0 otherwise. Equation (59)
gives an explicit expression for the distribution of city-sizes. Given the distribution of firm complexities, the
equilibrium distribution of city size fL(·), as shown in Equation (59), is unique. I get the following result:

Proposition 10 The equilibrium city-size distribution fL(·) is unique.

Next, I discuss the stability of the heterogeneous equilibrium. Similar to the stability discussion for
the homogeneous equilibrium, I prove the stability of the heterogeneous equilibrium through a perturbation
exercise. Fix the set of equilibrium cities as well as the set of firms located in each cities. Consider a city. In
equilibrium, its population is L and it has M firms of draw z. Labor demand for each firm is:

l = (σ − 1)σ

σσ
(ψ(N(z), L; z))σ−1

w(L)σ RPσ−1.

From the local labor market condition,

M
(σ − 1)σ

σσ
(ψ(N(z), L; z))σ−1

w(L)σ RPσ−1 = L,

I get wage w(L) as a function of L. Recall that worker indirect utility is given by:

U(L) ∝ w(L)L−η

The equilibrium is stable if worker utility decreases if a small mass of individuals move into the city. Note
that I do not need to consider firms as firms are already maximizing their profits by locating in city L. I
prove by contradiction, i.e. suppose ∂ logU(L)

∂ logL > 0 instead.

∂ logU(L)
∂ logL = w′(L)L

w(L) − η > 0

Differentiating local labor market clearing condition with respect with L, I get

M
(σ − 1)σ

σσ
RPσ−1

w(L)σ

[
(σ − 1)∂ψ

∂L
− σw

′(L)
w(L)

]
= 1. (60)
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From Equation (17), and the assumption that w′(L)
w(L) L > η, I get,

L

[
(σ − 1)∂ψ

∂L
− σw

′(L)
w(L)

]
< −η < 0

A contradiction to Equation (60). I get the following result:

Proposition 11 The heterogeneous equilibrium distribution of city size fL(·) is stable.

B.9 General equilibrium quantities

I now solve for the full set of general equilibrium quantities. The general equilibrium variables remaining to
be determined are the aggregate revenues in the traded goods sector R, the mass of firms M and the price
index P . To solve for the 3 variables, I need 3 equations, as specified below.

Using free entry condition, I get

fEP = (σ − 1)σ−1

σσ
ξRPσ−1

∫
z

(
ψ(N,L; z)
κ−1L(z)η

)σ−1
dF (z). (61)

Next, individual firms’ production must sum up to aggregate production,

1 = (σ − 1)σ−1

σσ−1 MPσ−1
∫
z

(
ψ(N,L; z)
κ−1L(z)η

)σ−1
dF (z). (62)

Lastly, using the national labor market clearing condition, I get

L̄ = (σ − 1)σ

σσ−1 MξRPσ−1
∫
z

ψ(N,L; z)
κ−1L(z)η dF (z) (63)

Using Equations (62) and (63), I can solve for the aggregate revenue:

σ − 1
σ

ξ

∫
z
ψ(N,L;z)σ−1

κ−1L(z)η dF (z)∫
z

(
ψ(N,L;z)
κ−1L(z)η

)σ−1
dF (z)

= L̄

R
. (64)

Combining Equations (61) and (62), I get sectoral mass of firms:

M = ξR

σfEP
(65)

Lastly, using Equations (61), I get the sectoral price indexes:

Pσ−1 = fE

(σ−1)σ−1

σσ ξR
∫
z

(
ψ(N,L;z)
κ−1L(z)η

)σ−1
dF (z)

(66)
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B.10 Descriptive evidence

In this part, I present descriptive evidence that is consistent with the theoretical results in Section 4. The
model predicts that, more complex firms sort into larger cities. This sorting of complexity generates sorting
of other firm-level variables, including profits and revenue (Proposition 6). I first investigate how, average
firms’ division of labor and labor payment change as city size increases.73 The model features a single sector
economy, in which the elasticities of firms’ division of labor and firm revenue to city size are both positive.
Empirically, I first divide firms into different sectors to control for cross-sector heterogeneities. I then calculate
the average establishment-level division of labor and labor payment within a sector-city cell and compute
their elasticities with respect to city size.74 Figure 6 plots the distribution of the two elasticities. For division
of labor, it is positive for 93% of the observations, and significantly negative for only two sectors, sawmill
and ferroalloy production.75 For labor payment, it is positive for 95% of the observations, and none of the
negative estimates is significant. Results are therefore largely consistent with model predictions.

Figure 6: Elasticity of mean division of labor and labor payment to city size

Elasticity is generated by first running the regression: log mean N(Lj) = αs+βs logLj+εj (resp. log mean labor payment(Lj)),
sector-by-sector at the CNAE2.0 4-digit level.

C Quantitative Appendix

This section provides further details to the quantitative exercise in the paper. The summary statistics of
the data used in the quantitative analysis are shown in Table 8. I first describe the estimation procedure,

73In the model, average labor payment is proportional to revenue. Labor payment is simply calculated as the total wage bill
within an establishment.

74To have a meaningful number of establishments within each sector-city cell, I use the 4-digit CNAE2.0 code, which gives
me 248 sectors.

75The results are not surprising since my model assumes that all locations are identical, whereas the location choices of these
this sector are driven by natural amenities, such as availability of forests and iron ores.
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then explains the identification strategy and the corresponding moments, and finally presents the estimation
results by presenting the goodness of fit to both the targeted and non-targeted moments.

C.1 Estimation procedure

To estimate χs = {α, υ, c, θ, νz, νL}s, I use a method of simulated moment (Gourieroux, Monfort and Renault,
1993). The estimation is done for each sector separately. For each sector, I first construct a set of artificial
Brazilian firms. Following Eaton, Kortum and Kramarz (2011), I draw a large sample of firms, 100,000 firms
for each sector, to reduce the sampling variation in my simulation. Note that the number of simulated firms
does not bear any relationship to the number of actual Brazilian firms. Firms operate as the model tells
them, given some initial values of χs. In particular, I follow Gaubert (2018) and make firms choose optimal
production location from 400 bins of normalized city sizes.76 I then calculate the moments generated by the
simulated economy. The steps are repeated until a find a set of moments that minimize the distance between
the set of data moments and simulated moments, using the following criterion:

χ̂s = arg min (ms,data −ms,sim(χs))′J(ms,data −ms,sim(χs))

The estimation follows the steps below:

1. I fix two set of random seeds from a uniform distribution on (0,1): one 100,000 for the firms; and one
100,000 × 400 for the firm-city-size-specific idiosyncratic shocks.

2. Given νz and νL, I use the random seeds to produce 100,000 realizations of firm complexities and
100,000 × 400 realizations for the idiosyncratic shocks.

3. For each city size, I use Equation (14) to calculate the optimal division of labor N∗.

4. For each city size, I plug N∗ into Equation (25), to obtain the maximized firm productivity.

5. Based on the maximized firm productivity for each city bin, firms make a discrete choice of city size,
according to Equation (29).

6. I then compute the 6 sets of moments described in Section 5.4.

7. I repeat Steps 1-6 to find parameters that minimize the objective function in Equation (30), using the
particle swarm optimization (PSO) method (Kennedy and Eberhart, 1995).

76This restriction imposes 400 discrete choices of optimal city size for firms. Even though the choice set is exogenously given,
the equilibrium city-size distribution is determined endogenously in general equilibrium.
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C.2 Moments and identification

Geographic distribution of firms
The first set of moments I use is the share of sectoral employment that falls into one of the four city-size bins.
City-size bins are obtained by ordering cities by their sizes and creating bins using the threshold cities with
less than 25%, 50% and 75% of the overall sectoral workforce. They describe the geographic distribution of
economic activities at the sector level and hence give information on the density of firms located in different
city sizes. Therefore, they help to identify the distribution of firm complexities, i.e., νz.

Firm-size distribution
The second set of moments is the share of firms that fall within the five bins of normalized firm labor payment.
These bins are defined by the 25, 50, 75 and 90th percentiles of the distribution of firm sizes measured in labor
payment. The firm-size distribution is affected by the distributions of firm complexities and firm-city-size
idiosyncratic shocks. These five moments allow me to identify νL and νz separately. Intuitively, νz affects the
relative quantiles of the firm-size distribution both indirectly, through the matching function, and directly,
through the distribution of firm complexity z. In contrast, νL only affects the relative quantiles directly,
through the matching function.

Increases in the average division of labor across city sizes:
To measure increases in the average division of labor across city sizes, I consider 4 moments, i.e., the average
firms’ division of labor within each quartile of city size. These four moments contribute to the identification
of (c, θ) separately from α—the reduced-form agglomeration externalities—and υ—the interaction between
city size and complexity. As city size increases, firm productivity increases through α, υ and (c, θ). However,
these channels differ importantly: (c, θ) can only increase firm productivity through division of labor, whereas
α or υ increases firm productivity directly and does not affect firms’ division of labor.

Increases in the average firm size across city sizes:
To measure increases in the average firm size across city sizes, I consider 4 moments, i.e., the average
firm size measured in labor payment within each quartile of city size. This set of moments contribute to
the identification of α—the reduced-form agglomeration externalities—separately from υ—the interaction
between city size and complexity, which jointly determine the sorting of firms across space with (c, θ). As
mentioned, α, υ and (c, θ) all affect how firm productivity increases as city size increases. Given (c, θ), we can
separately identify α from υ, because there is an interaction between firm complexity and city size through
υ, which pushes the productivity up more than linearly (through α), since the latter does not interact with
firm complexities.

Within-city variations in firms’ division of labor
To summarize within-city variations in firms’ division of labor, I use the variance of firms’ division of labor
in each quartile of city sizes. These four moments help to separately identify c and θ. Given a city size,
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the impact of city size on division of labor is the same for all firms there. I can, therefore, identify the
complementarity between division of labor and complexity (i.e., c) using the within-city variation in firms’
division of labor, relative to that in firm complexities. Intuitively, all else equal, small changes in firm
complexity would generate large variation in division of labor, if the complementarity is strong.

C.3 Estimation results

The parameter estimates are shown in Table 9.

Sector α̂ υ̂ ĉ θ̂ ν̂z ν̂L

Mfg of food products, beverages and tobacco products 0.167 0.001 0.296 0.8177 0.268 0.109
(0.008) (0.306) (0.130) (0.185) (0.055) (0.084)

Mfg of textiles 0.023 0.010 0.355 0.320 0.375 0.546
(0.007) (0.121) (0.113) (0.425) (0.091) (0.903)

Mfg of wearing apparel 0.063 0.027 0.208 0.412 0.744 0.426
(0.015) (0.154) (0.162) (0.274) (0.820) (0.035)

Mfg of leather goods and footwear, leather tanning 0.047 -0.050 0.118 0.316 0.399 0.298
(0.124) (0.978) (0.204) (0.198) (0.141) (0.098)

Mfg and products of wood, except furniture 0.001 0.014 0.058 0.716 0.540 0.430
(0.014) (0.088) (0.066) (0.246) (0.146) (0.278)

Mfg of pulp, paper and paper products 0.010 0.012 0.036 0.248 0.272 0.452
(0.055) (0.006) (0.098) (0.300) (0.685) (0.581)

Publishing, printing and reproduction of recorded media 0.048 0.012 0.371 0.584 0.607 0.762
(0.023) (0.007) (0.233) (0.352) (0.412) (0.451)

Mfg of chemicals and chemical products 0.015 0.072 0.401 0.772 0.475 0.113
(0.008) (0.351) (0.398) (0.721) (0.619) (0.012)

Mfg of pharmaceutical products 0.146 0.200 0.565 0.234 0.977 0.647
(0.676) (0.004) (0.671) (0.278) (0.878) (0.632)

Mfg of rubber and plastic products 0.034 0.005 0.423 0.130 0.813 0.224
(0.021) (0.687) (0.141) (0.073) (0.243) (0.015)

Mfg of glass, ceramic, brick and cement products 0.046 0.045 0.189 0.078 0.233 0.157
(0.021) (0.743) (0.111) (0.021) (0.140) (0.007)

Mfg of basic metals 0.014 -0.030 0.159 0.264 0.300 0.303
(0.026) (0.513) (0.046) (0.184) (0.167) (0.361)

Mfg of fabricated metal products, except machinery 0.094 0.024 0.340 0.532 0.399 0.707
(0.019) (0.320) (0.049) (0.116) (0.088) (0.147)

Mfg of computer and electronic products 0.073 0.080 0.612 0.252 0.637 0.401
(0.084) (0.973) (0.922) (0.392) (0.326) (0.422)

Mfg of electrical machines 0.090 0.081 0.509 0.178 0.401 0.125
(0.166) (0.052) (0.200) (0.299) (0.356) (0.667)

Mfg of other equipments and machines 0.067 0.023 0.453 0.119 0.239 0.400
(0.042) (0.089) (0.310) (0.062) (0.056) (0.091)

Mfg of automotive vehicles 0.002 0.203 0.601 0.724 0.275 0.139
(0.010) (0.076) (0.099) (0.366) (0.084) (0.564)

Mfg of other transport equipment 0.020 0.240 0.591 0.278 0.647 0.481
(0.067) (0.090) (.911) (0.986) (1.246) (0.988)

Mfg of furniture 0.017 0.011 0.441 0.628 0.827 0.538
(0.019) (0.315) (0.041) (0.285) (0.566) (0.073)

Mfg of miscellaneous products, other mfg activities 0.036 0.359 0.542 0.798 0.836 0.986
(0.132) (0.066) (0.588) (0.466) (0.376) (0.162)

α is the log-linear standard agglomeration coefficient; υ is the log-supermodularity coefficient on the complementarity between
complexity and city size; c is the log-supermodulary coefficient on the complementarity between complexity and the division of labor;
θ is the log-supermodulary coefficient on the complementarity between the division of labor and city size; νz is the variance of firm
complexity draws; νL is the variance of firm-city size specific shocks.

Table 9: Estimated parameters
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C.3.1 Targeted Moments

Model fit for the set of targeted moments are shown in Figures 7 to 11.
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Figure 7: Distribution of employment across cities
(Actual moments: solid red line; simulated moments: dashed blue line)
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Figure 9: Average labor payment by city size
(Actual moments: solid red line; simulated moments: dashed blue line)
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Figure 10: Average division of labor by city size
(Actual moments: solid red line; simulated moments: dashed blue line)
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Figure 11: Variance of division of labor within city bins
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D Empirics Appendix

I provide further details to the quasi-experiment in this part. I start by providing more background informa-
tion to the policy experiment and describing technological details that I leverage in my identification strategy.
Next, I provide results for the robustness tests. Finally, I present additional results form the quasi-experiment
that hints at the potential mechanisms at work to facilitate greater worker specialization following the ICT
improvement. Table 10 compares characteristics of establishments in the treated and control areas before
the quasi-experiment.

Treatment Control All
Log (no of occupations) 1.54 1.28 1.47

(.98) (.978) (.982)
Specialization index .6 .557 .588

(.263) (.275) (.267)
Share of managers .347 .393 .334

(.398) (.393) (.397)
Estb size 40.29 37.03 39.36

(123) (112) (120)
Log (city size) 5.52 4.52 5.18

(1.76) (1.05) (1.79)
Total .71 .29 1.00

Data source: RAIS 2010. Establishments are considered treated if distance to the nearest broadband backbone is less than 250
km. Standard deviations are shown in parentheses.

Table 10: Establishment-level characteristics before the treatment
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D.1 Details of PNBL

Brazil enacted its National Broadband Plan (PNBL) in 2010, thought a presidential decree. The objective
of the PNBL is to promote and disseminate the use of ICT to the lower-density and less-developed areas
of Brazil. Until 2010, the distribution of broadband connections has been extremely uneven, closely re-
flecting the variation of population density across cities. The broadband was primarily provided by private
telecommunication companies.77 The private companies invested in the costly infrastructure only in highly
developed where the population could afford the high service fees. This gap in broadband deployment raised
concerns in the federal government. The government decided to take actions to stimulate broadband deploy-
ment adoption. In 2009, the first draft of the PNBL was released. The government proposed an investment
amounting to US$41.9bil, of which US$27.2 billion from telecommunications operators and US$14.72 billion
from government spending including tax cuts. After 6 months of discussion and deliberation, on May 12,
2010, President Luis Inàcio Lula da Silva signed Decree nr 7.175, which officially created PNBL.

A major initiative for the PNBL is the expansion of broadband backbone infrastructure. To implement
this, Decree nr 7.175 addressed the recreation of the state-owned operator Telebras, which would build
its own infrastructure or use other government-owned telecommunications infrastructure assets and other
infrastructure for example roads or power grid lines. The expansion of the backbone infrastructure was given
a budget of $720mil USD.78

Telebras has been working with other companies and government organizations to expand the broadband
backbone network in Brazil. As of 2014, the new broadband backbone extension, consisting mainly of
optical fiber network, had reached 48,000km. The network now covers most of the country’s states, and
more importantly, improves the connectivity of regions which are otherwise too costly to receive broadband
backbones. The fixed broadband connections in Brazil has increased from 15mil in 2010 to 22.5mil in 2014,
as shown in Figure 14.

D.2 Broadband backbones and deployment technology

Figure 15 shows the supply chain of broadband internet in Brazil. The delivery of internet corresponds to
four groups of major infrastructures. Listed in increasing order of “downstreamness” (and decreasing order of
capacity), these four types of infrastructures are: submarine cables providing national / international connec-
tivity, a national “backbone” of high-capacity (typically fiber optics) cables connecting submarine cables to
the heartland of Brazil, smaller (usually radio or fiber) cables connecting national backbone to metropolitan
base stations, and the “last-mile" infrastructure, consisting of fiber optic cables, wireless networks, coaxial
cables and traditional telephone networks, to connect end users (Knight, Feferman and Foditsch, 2016). In
the analysis, I focus on the national backbone infrastructure. These are high-capacity fiber optic cables
running from the coastal submarine cable landing points to the inland regions.

77As of 2008, Brazil had 10 million fixed broadband lines in operation, out of which 63.7% were provided by its two biggest
telecom companies, Oi and Telefonica.

78These government-owned telecommunications assets refer to fiber optic networks owned by government-owned companies
Petrobras and Eletrobras, which cover many parts of the country and have a considerable amount of underused capacity.
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Figure 14: Growth of fixed broadband connections in Brazil

Figure 15: Broadband Supply Chain

Since backbones use most exclusively fiber optic cables, there is a limit to its transmission range before
losing all the data. The optimal length for each stretch is about 75 km (IGIC, 2004). The transmission
distance is then extended by placing a device, called a repeater, at the end of the stretch to boost the signal.
Putting in the repeater is costly, and there is a limit to the number of repeaters that can be placed because
it becomes no longer cost effective to do so. In general, up to four repeaters are implemented, making the
maximum distance 400 km.

D.3 Robustness tests

In this section, I detail the robustness tests I run for the regressions specified by Equations (34), (35) and (36)
in Section 7. I start by showing the pre-trends using the specialization index as the alternative definition for
division of labor. As shown in Figure 16, the paths of growth over time between the treatment and control
groups are almost identical to each other before the treatment, similar to the trends depicted in Figure 3.
The trends started to converge after the treatment, showing the effects of new broadband infrastructure on
division of labor within establishments.

Next, I present the results when I change the radius around the backbone network used to define connection
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status. In Table 12, I show how the results change when the radius used to define connectivity is varied.
In all cases, the results remain qualitatively and quantitatively similar to those in Table 2. This shows
that the estimated effect of better ICT infrastructure is not sensitive to the definition of connectivity used.
In addition to confirming that the estimated effect is not sensitive to varying the distance, the findings in
Table 12 are useful because they reduce concerns one might have about potential violations of the Stable
Unit Treatment Value Assumptions (SUTVA), which could lead to underestimation (if, e.g., establishments
relocate) or overestimation (if, e.g., establishments in untreated areas suffer from fast internet access in the
neighboring areas) of the effect of broadband internet access. Note that no significant effect of broadband
internet access on the relocation of firms is found when I investigate this possibility directly.

While I focus on the impact of the ICT infrastructure on firms’ division of labor in this paper, extensive
literature has found that technological changes such as fast internet tend to benefit skilled workers and
hurt low skilled workers, i.e., skill-biased technological change.79 In Online Appendix, I show that faster
internet connection indeed increases skill intensities within establishments in affected cities. If the codes for
skilled occupations are more finely divided, then the increase in the total number of occupation codes in
response to the new ICT infrastructure may simply reflect a shift towards more skilled occupations within
an establishment. To investigate this, I separate occupation codes into two groups based on skill intensities
of the workers within an occupation.80 As shown in Table 29, the baseline results continue to hold when I
estimate the impact of the ICT infrastructure for high and low skilled occupations separately.

Next, I vary the samples used for the regressions in several ways. I first exclude multiple-establishment
firms to account for the possibility that firms relocate their resources across different establishments in
response to the new ICT infrastructure. As shown in Table 14, The results are essentially unchanged.

While I argue in Section 7 that the alignment of the broadband backbones is exogenous conditional on
observables as they follow the alignment of existing infrastructure, the locations for the origin and destination
locations may be chosen endogenously, in anticipation to potential changes in certain economic outcomes in
those locations. To account for the possible violation of the identifying assumption, I drop these terminal
locations. The results, shown in Table 15, the results are not sensitive to excluding establishments in locations
where the new national backbone starts or ends.

Submarine cable landing points, in addition to being on the coast, are also typically in or near large cities.
If such places were on a different trend in the outcomes of interest before the new backbones are introduced,
I may incorrectly attribute an estimated treatment effect to the availability of the new broadband network.
In Table 16, I exclude, from my sample, all establishments in locations closer than 100 kilometers from a
landing point. The results remain robust.

Going by the similar logic, areas that had broadband access before PNBL tend to be larger or more
densely populated cities. These places may also grow along a different path than other locations. To account

79See Acemoglu and Autor (2011) for a review of the literature on skill-biased technological changes, and Hjort and Poulsen
(2019) for direct evidence that impacts from improvement in ICT infrastructure is skill biased.

80A skilled occupation is one in which the share of high-skilled workers within that occupation is above the median of all
occupation codes. Following conventional literature, I define high-skilled workers as those with some college degree or above.
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for this, I drop all the establishments in locations that had already been connected to the broadband network
before PNBL in 2009. As shown in Table 17, the baseline regression results continue to hold. The coefficients
to test the heterogeneity in the treatment across cities and sectors are less precisely estimated, while still
remaining positive. The latter regressions lack power because that more than half of the sample is dropped.

In Table 18, I restrict attention to connected locations and thus estimate the effect of better internet
in the sub-sample consisting only to eventually treated establishments. In this case, the comparison group
for establishments in a year when a location became connected to a new backbone cable consists of other
establishments in the same year but in locations that did not have the new cable at that time. I thus prefer
my baseline approach as outlined earlier to the one used in Table 18, but it is nonetheless reassuring that
the estimated effect of access to broadband network to various establishment-level variables, if anything, is
bigger in magnitude and remains significant when only establishments in connected locations are included in
the sample.

For the next three robustness tests, I drop from the sample establishments located in areas that may
grow on a different path from the other firms. In Table 19, I exclude establishments that are either very near
(<10th percentile) or very far (>90th percentile) from the backbone network. In Table 20, I only consider
establishments in urban areas by dropping establishments located in microregions with a density lower than
400 persons/km2.81 In Table 21, I drop establishments in very large cities.82 The results are robust to all
three tests.

In Table 22, I separate firms into two groups based on their sectoral share of exports. This is to account
for the possibility that the results are driven by more export-oriented firms. As shown in the table, baseline
results hold for both types of establishments.

The alignment of the new broadband backbones was announced in 2010. It is possible that establish-
ments in the treated locations had anticipated the impending new infrastructure and started adjusting their
organization structures prior to the actual implementation of the new backbones. If this was true, I may un-
derestimate the true effects of the new infrastructure on division of labor. In Table 23, I drop the observations
in 2010 and 2011. The estimates remain essentially the same as the baseline results.

Results in Table 24 control for municipality-specific linear trends. Including these restrictive controls
have remarkably little effect on the magnitude and significance of the estimated effect of access to broadband
on establishment-level variables of interest. In Table 25, I include two lead variables of Backbonejt. The
estimates on the two leads are zero, supporting the assumption of parallel trends.

There may also be potential concerns about spatial correlation in the error term. Cameron and Miller
(2015) note that failure to account for such dependence may lead to over-rejection of the null hypothesis. To
address this concern, I follow Conley (1999) to allow for serial correlation over all time periods, as well as
spatial correlation among establishments that fall within 100km of each other. As shown in Table 26, the
results are robust when I account for possible spatial correlation.

Lastly, a concern in DiD analysis is that serial correlation can bias standard errors, leading to over-
81This is based on World Bank’s definition for urban versus rural areas
82“Very large cities" are defined as the top 10-percentile of the microregions in terms of city size.
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rejection of the null hypothesis of no effect (Bertrand, Duflo and Mullainathan, 2004). I follow Chetty,
Looney and Kroft (2009) to address this concern through a non-parametric permutation test for β = 0 in
Equation (34). To do so, I sample from the set of true broadband backbone implementation years observed
in the data and assign a randomly chosen “fake" treatment time to each municipality while maintaining the
alignment of the new backbones thus keeping each observation’s connectivity status. Defining G(βp) to be
the empirical cumulative distribution functions of these placebo effects, the statistic 1−G(β) gives a p-value
for the hypothesis that β = 0. Intuitively, if the new broadband backbones had a significant effect on the
number of occupations, the estimated coefficient for β should be in the upper tail of estimated placebo effects.
Since this test does not make parametric assumptions about the error structure, it does not suffer from the
over-rejection bias of the t-test. Figure 17 illustrates the empirical distributions of placebo effects G for β̂
from performing the permutation tests 4000 times. The vertical lines denote the effect of new broadband
backbone to treated areas. The implied p-values are 0.001 and 0.005, for division of labor measured by the
log number of occupations and specialization index, respectively. These are very similar to the estimates
from the t-tests as reported in Table 2.

Separately, I also consider the specification, in which I incorporate both interaction terms into a single
regression equation. More specifically, I run

logNjt = α+βBackbonejt+γBackbonejt×logLc(j),t0 +υBackbonejt×log cs(j),t0 +δj+δt+θm(j)×t+εjt. (67)

As shown in Table 27, the results remain qualitatively very similar to the baseline estimates in which I
separately identify the interaction effects of the treatment with city size, and with sector-level complexity.
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Figure 16: Specialization index in treated versus control groups in Brazil
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Figure 17: Distribution of placebo estimates

This figure shows a non-parametric permutation test of β = 0. I sample from the set of true broadband backbone implementation
years observed in the data, assigning a randomly chosen “fake" time to each location with equal probability while maintaining each
observation’s backbone connectivity status. The figure depicts the empirical cdf of estimates resulting from permuting trajectories 4,000
times and running Equation (34) on the fake datasets. The vertical lines represent the true estimates; where these fall in empirical cdf
of estimates from datasets with permuted trajectories implies their p-values. The implied p-values are 0.0022 for the log number of
occupations and 0.011 for the specialization index. These can be compared to 0.007 and 0.000 from Table 2.
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Dependent variable Log (No of occs) Specialization index
(1) (2) (3) (4)

Interm. inputs G3 exp share Interm. inputs G3 exp share
Backbonejt -.0017 -.001 .0092 .0112

(.0041) (.0033) (.0081) (.0084)
Backbonejt × logLct0 .0089*** .0075*** .0138*** .0138***

(.0008) (.0008) (.0034) (.0034)
Backbonejt × log cst0 .021*** .002* .005** .003***

(.0032) (.001) (.002) (.001)
Mean of outcome 1.45 1.45 .43 .43
Obs 777096 777096 777096 777096
R-sq .854 .854 .718 .719
Robust standard errors clustered by municipality in parentheses. Significance levels: * 10%, ** 5%,
***1%. All regressions include a constant term, establishment and year FEs.

Table 27: Broadband connection and division of labor, combining two interactions

D.4 Additional results

In this section, I present additional results on the impact of the improved ICT infrastructure on other
establishment-level variables.

(1) (2) (3) (4)
Interm. inputs G3 exp share

Dependent variable Share of managers

Backbonejt -.0114*** -.0087*** -.0072*** -.0085***
(.0007) (.0007) (.001) (.0008)

Backbonejt × logLct0 -.001***
(.0001)

Backbonejt × log cst0 -.0011*** -.0001
(.0003) (.0003)

Mean of outcome .104 .104 .104 .104
Obs 777096 777096 777096 777096
R-sq .731 .731 .731 .732

Robust standard errors clustered by municipality in parentheses. Significance levels: * 10%,
** 5%, ***1%. All regressions include a constant term, establishment and year FEs.
High-skilled workers are defined as those with some college education and above.

Table 28: Impacts of broadband backbone on share of managers within establishment
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(1) (2) (3) (4)
Interm. inputs G3 exp share

Dependent variable Skill intensity

Interm. inputs G3 exp share

Backbonejt .0543*** .0667*** .0389*** .0621***
(.0009) (.001) (.0009) (.001)

Backbonejt × logLct0 .0081***
(.0002)

Backbonejt × log cst0 .0194*** .0061***
(.0007) (.0004)

Mean of outcome .07 .07 .07 .07
Obs 777096 777096 777096 777096
R-sq .628 .63 .629 .629

Robust standard errors clustered by municipality in parentheses. Significance levels: *
10%, ** 5%, ***1%. All regressions include a constant term, establishment and year FEs.
High-skilled workers are defined as those with some college education and above.

Table 29: Impacts of broadband backbone on skill intensities within establishment

Dependent variable Population Migration of workers No. of firms Relocation of firms
(1) (2) (3) (4)

Backbonejt .0258 .0711 .0148*** .04
(.0287) (.0566) (.0024) (.1018)

Obs 5022 3618 5022 1062
R-sq .987 .716 .986 .225
Robust standard errors clustered by city in parentheses. Significance levels: * 10%, ** 5%, ***1%. All
regressions include a constant term, city and year FEs.

Table 30: Impacts of broadband backbone on migration of workers and firms

E Policy evaluation

In this part, I illustrate how one could use the estimated model for policy evaluations. In particular, I use
the estimated model to evaluate the impacts of the new broadband infrastructure on productivity and other
outcomes.

E.1 Short-term impacts

In the model, an exogenous shock to firm’s division of labor would bring about general equilibrium effects,
including the relocation of firms across cities and adjustment in city size when workers migrate internally in
response to changes in local labor market demand. Most of these variables require a longer time horizon to be
realized. Since my theory is static, the predictions can be seen as long-run general equilibrium effects. In Table
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30, I show that an improved internet connection has no significant effect the migration of establishments or
workers, within the observed period.83 Since I find no significant migration of workers and firms in response to
the new ICT infrastructure, I shut down firm sorting in this analysis to estimate the short-term productivity
impact.

I find that, in the short-term, the average productivity in treated areas increase by 3.94 percentage points
more than other areas. The productivity impact is generated through two channels: the direct impact of
improved ICT infrastructure on productivity, and additional productivity increase due to firms’ endogenous
adjustment in the optimal division of labor. Using the estimated model, I shut down the second channel
by fixing firms’ division of labor at the level before the program. In doing so, the change in productivity
reduces to 3.2% (or a 19% reduction), showing again that division of labor has substantial impact on firms’
productivity.

E.2 Long-term impacts

Lastly, I use the estimated model to simulate the long-run general-equilibrium effects of improved ICT
infrastructure by allowing firms and workers to move across space.

To evaluate the long-run general equilibrium impacts of the new policy, I adopt the following steps:

1. I fixed the aggregate number of workers, the set of firm-city-size specific idiosyncratic shocks, the
distribution of firm complexities, and the number of cities in each city bin.

2. I first calibrate the local increase in ICT infrastructure using the estimated model, to match the reduced-
form estimate in Section 7 on the impact of the new infrastructure on firms’ division of labor.

3. From the spatial equilibrium estimated using the actual economy, I incorporate the infrastructure
improvement to cities that receive the new infrastructure.

4. I recompute the optimal choices of city size by firms, taking into account the new infrastructure.

5. As the mix of firms within a city bin varies, the total labor demand for a given city size also changes.
Since the number of cities in each city bin is fixed, the changes in that total local labor demand for a
given city size would increase or reduce the size of each city bin.

6. The change in city size feeds back to firms’ production functions, affecting the local productivity and
labor costs. I then recompute the optimal choices of city size by firms, taking into account the change
in city size.

7. I iterate Steps 3-5, until I get a fixed point of this procedure in city sizes. The new city-size distribution
defines the long-term economy.

83I only observe at most two years after the program, as the most recent RAIS data I have access to is for Yr 2014.
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Using the new long-term economy, I first estimate the local impacts using the following OLS regression:

4t log ym = α+ βBackbonem + εm (68)

where 4t log ym is the log change in the outcomes of interest y in city m before and after the treatment,
and Backbonem is an indicator function taking the value of 1 if city m is connected to the new backbone
and 0 otherwise. The variables I consider here are the number of establishments, city size, and average local
productivity. Results from this specification are in Columns 1 to 3 in Table 31. In locations receiving the new
infrastructure, the model predicts that the number of establishment grows by 7.7 percentage points relative
to other locations. Correspondingly, the treated cities also experience a relative increase in the population of
7.8 percentage points.

Dependent var Log change in no. of estb Log change in city size Log change in estb pdty
(1) (2) (3)

Backbone .0743*** .0751*** .0951***
(.0011) (.0033) (.002)

Obs 558 558 558
R-sq .923 .571 .432
Significance levels: * 10%, ** 5%, ***1%. All regressions include a constant term.

Table 31: Simulated long-term local impacts of PNBL

The new infrastructure also affects the average local productivity. The model predicts that relative to
the control areas, the targeted cities would experience an increase in productivity by 9.98 percentage points.
The productivity impact is higher than the short-term local impact of 3.94 percentage points because the
long-run effects consist of both the effect of ICT infrastructure improvement, as well as productivity increase
due to additional agglomeration externalities as firms and workers move into the targeted areas.84

In addition to evaluating the local impacts of PNBL, the calibrated model also allows me to compute
the policy’s long-term aggregate effects. As explained in Section 7, one of the key policy objectives of the
program is to reduce spatial disparities. The literature (see, e.g., Kline and Moretti, 2014) points out that this
kind of spatially targeted policies may shift economic activities from one location to another. The aggregate
impacts on productivity and welfare are therefore ambiguous. Using my estimates, I examine how the new
infrastructure affects overall distribution of economic activities.

I compute the aggregate TFP and welfare effects of the policy, holding constant the treated areas.85 The
84These results are the same order of magnitude as the estimates by Hjort and Poulsen (2019), who find that access to

broadband internet increases firm productivity by 15.7 percentage points in African countries. It is also intuitive that my
estimates are lower, due to the model restriction that fast internet can only affect productivity by lowering the costs of division
of labor, and ignores other potential productivity effects of the fast internet.

85Aggregate TFP is constructed using the average sector-level productivity, TFP =
∏S

s=1 TFP
ξs
s , where TFPs =

means(ψjs). Welfare is measured by the worker’s real income, which is constant across space. It is defined by Ū = wκ
PLη

,
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simulation shows that the expansion of broadband infrastructure has positive and small long-run effects on
productivity and welfare. The PNBL increases the aggregate TFP by a mere 0.28 percentage point, and the
aggregate welfare by 0.29 percentage point. Positive impacts to treated areas are largely offset by negative
effects on other places, which is consistent with the qualitative results of Kline and Moretti (2014).

I last study the impact of the policy on the dispersion of spatial outcomes, by computing the Gini
coefficients for the distributions of GDP per capita and city size in the economy. Despite low aggregate
productivity and welfare effects, the policy achieves some success at reducing regional inequalities. Using the
estimated model, I find that the expansion of broadband backbones reduces Gini indices by 0.65% and 1.5%
for GDP per capita and city size, respectively.

where P is the aggregate price index.
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